GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Center for Marine Environmental Sciences; MARUM; Ocean Drilling Program; ODP  (2)
  • Hochschulschrift  (2)
  • Radiocarbon  (2)
  • Tropical Atlantic  (2)
  • AEOLD; Aeolian dust sample; ALTITUDE; Calculated, see reference(s); Carbon number of the homologue with highest abundance; Carbon Preference Index, n-Alkanes (C25-C33); D1; D10; D11; D12; D13; D14; D15; D16; D17; D18; D19; D20; D21; D22; D23; D24; D25; D3; D4; D5; D6; D7; D8; D9; Event label; Gas chromatography - Mass spectrometry (GC-MS); GeoB; Geosciences, University of Bremen; Latitude of event; Longitude of event; M41/1; M41/1_D1; M41/1_D10; M41/1_D11; M41/1_D12; M41/1_D13; M41/1_D14; M41/1_D15; M41/1_D16; M41/1_D17; M41/1_D18; M41/1_D19; M41/1_D20; M41/1_D21; M41/1_D22; M41/1_D23; M41/1_D24; M41/1_D25; M41/1_D3; M41/1_D4; M41/1_D5; M41/1_D6; M41/1_D7; M41/1_D8; M41/1_D9; Meteor (1986); n-Alkane, average chain length; n-Alkane, C31/(C29+C31) ratio; n-Alkane, detected carbon number range; n-Alkane C24, δ13C; n-Alkane C25, δ13C; n-Alkane C26, δ13C; n-Alkane C27, δ13C; n-Alkane C28, δ13C; n-Alkane C29, δ13C; n-Alkane C30, δ13C; n-Alkane C31, δ13C; n-Alkane C32, δ13C; n-Alkane C33, δ13C; n-Alkane C4 plant; n-Alkane weighted mean, δ13C
Document type
Keywords
Language
  • 1
    Keywords: climate change ; Dissertation ; Pleistocene ; environmental change ; Atlantic Ocean ; Africa ; Hochschulschrift ; Paläoklimatologie ; Mittelpleistozän ; Tropenklima ; Atlantischer Ozean Süd ; Zentralafrika
    Type of Medium: Book
    Pages: 187 S , graph. Darst., Kt
    ISBN: 9057440814
    Series Statement: Geologica Ultraiectina 223
    Language: English
    Note: Zsfassung in niederländ. und dt. Sprache , Zugl.: Utrecht, Univ., Diss., 2003
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Hochschulschrift
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (108 Seiten = 5 MB) , Graphen, Karte
    Edition: Online-Ausgabe 2023
    Language: English
    Note: Zusammenfassung in deutscher und englischer Sprache
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 19 (2004): PA4029, doi:10.1029/2003PA000892.
    Description: We compare a new mid-Pleistocene sea surface temperature (SST) record from the eastern tropical Atlantic to changes in continental ice volume, orbital insolation, Atlantic deepwater ventilation, and Southern Ocean front positions to resolve forcing mechanisms of tropical Atlantic SST during the mid-Pleistocene transition (MPT). At the onset of the MPT, a strong tropical cooling occurred. The change from a obliquity- to a eccentricity-dominated cyclicity in the tropical SST took place at about 650 kyr BP. In orbital cycles, tropical SST changes significantly preceded continental ice-volume changes but were in phase with movements of Southern Ocean fronts. After the onset of large-amplitude 100-kyr variations, additional late glacial warming in the eastern tropical Atlantic was caused by enhanced return flow of warm waters from the western Atlantic driven by strong trade winds. Pronounced 80-kyr variations in tropical SST occurred during the MPT, in phase with and likely directly forced by transitional continental ice-volume variations. During the MPT, a prominent anomalous long-term tropical warming occurred, likely generated by extremely northward displaced Southern Ocean fronts. While the overall pattern of global climate variability during the MPT was determined by changes in mean state and frequency of continental ice volume variations, tropical Atlantic SST variations were primarily driven by early changes in Subantarctic sea-ice extent and coupled Southern Ocean frontal positions.
    Description: The Dutch scientific funding organization (NWO) is thanked for financial support (project 75019617).
    Keywords: Sea surface temperatures ; Mid-Pleistocene transition ; Tropical Atlantic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Eglinton, T. I., Galy, V. V., Hemingway, J. D., Feng, X., Bao, H., Blattmann, T. M., Dickens, A. F., Gies, H., Giosan, L., Haghipour, N., Hou, P., Lupker, M., McIntyre, C. P., Montluçon, D. B., Peucker-Ehrenbrink, B., Ponton, C., Schefuß, E., Schwab, M. S., Voss, B. M., Wacker, L., Wu, Y., & Zhao, M. Climate control on terrestrial biospheric carbon turnover. Proceedings of the National Academy of Sciences of the United States of America, 118(8), (2021): e2011585118, htps://doi.org/ 10.1073/pnas.2011585118.
    Description: Terrestrial vegetation and soils hold three times more carbon than the atmosphere. Much debate concerns how anthropogenic activity will perturb these surface reservoirs, potentially exacerbating ongoing changes to the climate system. Uncertainties specifically persist in extrapolating point-source observations to ecosystem-scale budgets and fluxes, which require consideration of vertical and lateral processes on multiple temporal and spatial scales. To explore controls on organic carbon (OC) turnover at the river basin scale, we present radiocarbon (14C) ages on two groups of molecular tracers of plant-derived carbon—leaf-wax lipids and lignin phenols—from a globally distributed suite of rivers. We find significant negative relationships between the 14C age of these biomarkers and mean annual temperature and precipitation. Moreover, riverine biospheric-carbon ages scale proportionally with basin-wide soil carbon turnover times and soil 14C ages, implicating OC cycling within soils as a primary control on exported biomarker ages and revealing a broad distribution of soil OC reactivities. The ubiquitous occurrence of a long-lived soil OC pool suggests soil OC is globally vulnerable to perturbations by future temperature and precipitation increase. Scaling of riverine biospheric-carbon ages with soil OC turnover shows the former can constrain the sensitivity of carbon dynamics to environmental controls on broad spatial scales. Extracting this information from fluvially dominated sedimentary sequences may inform past variations in soil OC turnover in response to anthropogenic and/or climate perturbations. In turn, monitoring riverine OC composition may help detect future climate-change–induced perturbations of soil OC turnover and stocks.
    Description: This work was supported by grants from the US NSF (OCE-0928582 to T.I.E. and V.V.G.; OCE-0851015 to B.P.-E., T.I.E., and V.V.G.; and EAR-1226818 to B.P.-E.), Swiss National Science Foundation (200021_140850, 200020_163162, and 200020_184865 to T.I.E.), and National Natural Science Foundation of China (41520104009 to M.Z.).
    Keywords: Radiocarbon ; Plant biomarkers ; Carbon turnover times ; Fluvial carbon ; Carbon cycle
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2005. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 20 (2005): PA1019, doi:10.1029/2005PA001134.
    Keywords: Sea-surface temperatures ; Mid-Pleistocene transition ; Tropical Atlantic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-26
    Description: © The Author(s), 2017. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Chemical Geology 466 (2017): 454-465, doi:10.1016/j.chemgeo.2017.06.034.
    Description: We present dissolved organic carbon (DOC) concentrations, particulate organic matter (POM) composition (δ13C, δ15N, ∆14C, N/C), and particulate glycerol dialkyl glycerol tetraether (GDGT) distributions from a 34-month time-series near the mouth of the Congo River. An end-member mixing model using δ13C and N/C indicates that exported POM is consistently dominated by C3 rainforest soil sources, with increasing contribution from C3 vegetation and decreasing contribution from phytoplankton at high discharge. Large C4 inputs are never observed despite covering ≈ 13 % of the catchment. Low and variable ∆14C values during 2011 [annual mean = (-148 ± 82) ‰], when discharge from left-bank tributaries located in the southern hemisphere reached record lows, likely reflect a bias toward pre-aged POM derived from the Cuvette Congolaise swamp forest. In contrast, ∆14C values were stable near -50 ‰ between January and June 2013, when left-bank discharge was highest. We suggest that headwater POM is replaced and/or diluted by C3 vegetation and pre-aged soils during transit through the Cuvette Congolaise, whereas left-bank tributaries export significantly less pre-aged material. GDGT distributions provide further evidence for seasonal and inter-annual variability in soil provenance. The cyclization of branched tetraethers and the GDGT-0 to crenarchaeol ratio are positively correlated with discharge (r ≥ 0.70; p-value ≤ 4.3×10-5) due to the incorporation of swamp-forest soils when discharge from right-bank tributaries located in the northern hemisphere is high. Both metrics reach record lows during 2013, supporting our interpretation of increased left-bank contribution at this time. We conclude that hydrologic variability is a major control of POM provenance in the Congo River Basin and that tropical wetlands can be a significant POM source despite their small geographic coverage.
    Description: J.D.H. was supported by the NSF Graduate Research Fellowship Program under grant number 2012126152; E.S. was supported by the DFG Research Center/Cluster of Excellence “The Ocean in the Earth System” at MARUM – Center for Environmental Sciences; V.V.G. was partly supported by the US National Science Foundation, grants OCE-0851015 and OCE-0928582; R.G.M.S. was partly supported by the US National Science Foundation, grants OCE-0851101, OCE-1333157, and OCE-1464396; and T.I.E. was partly supported by the Swiss National Science Foundation (SNF Grant No. 200021_140850).
    Keywords: Biomarkers ; Congo River ; GDGTs ; Particulate Organic Matter ; Radiocarbon
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Talbot, Helen M; Handley, Luke; Spencer-Jones, Charlotte L; Dinga, Bienvenu Jean; Schefuß, Enno; Mann, Paul James; Poulsen, John R; Spencer, Robert GM; Wabakanghanzi, Jose N; Wagner, Thomas (2014): Variability in aerobic methane oxidation over the past 1.2Myrs recorded in microbial biomarker signatures from Congo fan sediments. Geochimica et Cosmochimica Acta, 133, 387-401, https://doi.org/10.1016/j.gca.2014.02.035
    Publication Date: 2024-02-02
    Description: Methane (CH4) is a strong greenhouse gas known to have perturbed global climate in the past, especially when released in large quantities over short time periods from continental or marine sources. It is therefore crucial to understand and, if possible, quantify the individual and combined response of these variable methane sources to natural climate variability. However, past changes in the stability of greenhouse gas reservoirs remain uncertain and poorly constrained by geological evidence. Here, we present a record from the Congo fan of a highly specific bacteriohopanepolyol (BHP) biomarker for aerobic methane oxidation (AMO), 35-aminobacteriohopane-30,31,32,33,34-pentol (aminopentol), that identifies discrete periods of increased AMO as far back as 1.2 Ma. Fluctuations in the concentration of aminopentol, and other 35-aminoBHPs, follow a pattern that correlates with late Quaternary glacial-interglacial climate cycles, with highest concentrations during warm periods. We discuss possible sources of aminopentol, and the methane consumed by the precursor methanotrophs, within the context of the Congo River setting, including supply of methane oxidation markers from terrestrial watersheds and/or marine sources (gas hydrate and/or deep subsurface gas reservoir). Compound-specific carbon isotope values of -30 per mil to -40 per mil for BHPs in ODP 1075 and strong similarities between the BHP signature of the core and surface sediments from the Congo estuary and floodplain wetlands from the interior of the Congo River Basin, support a methanotrophic and likely terrigenous origin of the 35-aminoBHPs found in the fan sediments. This new evidence supports a causal connection between marine sediment BHP records of tropical deep sea fans and wetland settings in the feeding river catchments, and thus tropical continental hydrology. Further research is needed to better constrain the different sources and pathways of methane emission. However, this study identifies the large potential of aminoBHPs, in particular aminopentol, to trace and, once better calibrated and understood, quantify past methane sources and fluxes from terrestrial and potentially also marine sources.
    Keywords: Center for Marine Environmental Sciences; MARUM; Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Küchler, Rony R; Schefuß, Enno; Beckmann, Britta; Dupont, Lydie M; Wefer, Gerold (2013): NW African hydrology and vegetation during the Last Glacial cycle reflected in plant-wax-specific hydrogen and carbon isotopes. Quaternary Science Reviews, 82, 56-67, https://doi.org/10.1016/j.quascirev.2013.10.013
    Publication Date: 2024-01-09
    Description: We present a hydrologic reconstruction of the Sahara-Sahel transition, covering the complete last glacial cycle (130 ka), based on a combination of plant-wax-specific hydrogen (dD) and carbon isotopes (d13C). The dD and d13C signatures of long-chain n-alkanes from ODP Site 659 off NW Africa reveal a significant anti-correlation. Complementary to published pollen data, we infer that this plant-wax signal reflects sensitive responses of the vegetation cover to precipitation changes in the Sahel region, as well as varying contributions from biomes north of the Sahara (C3 domain) by North-East Trade Winds (NETW). During arid phases, especially the northern parts of the Sahel likely experienced crucial water stress, which resulted in a pronounced contraction of the vegetation cover, thus reducing the amount of C4 plant waxes from the region. The increase in NETW strength during dry periods further promoted a more pronounced C3-plant-wax signal derived from the North African C3 plant domain. During humid periods, the C4-dominated Sahelian environments spread northward into the Saharan realm, in association with lower NETW inputs of C3 plant waxes. Arid-humid cycles deduced from plant-wax dD are in accordance with concomitant changes in weathering intensity reflected in varying major element distributions. Environmental shifts are generally linked to periods with large fluctuations in Northern Hemisphere summer insolation. During Marine Isotope Stages 2 and 3, when insolation variability was low, coupling of the hydrologic regime to alkenone-based estimates of NE Atlantic sea-surface temperatures becomes apparent.
    Keywords: Center for Marine Environmental Sciences; MARUM; Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Schefuß, Enno; Ratmeyer, Volker; Stuut, Jan-Berend W; Jansen, J H Fred; Sinninghe Damsté, Jaap S (2003): Carbon isotope analyses of n-alkanes in dust from the lower atmosphere over the central eastern Atlantic. Geochimica et Cosmochimica Acta, 67(10), 1757-1767, https://doi.org/10.1016/S0016-7037(02)01414-X
    Publication Date: 2024-06-26
    Description: Atmospheric dust samples collected along a transect off the West African coast have been investigated for their lipid content and compound-specific stable carbon isotope compositions. The saturated hydrocarbon fractions of the organic solvent extracts consist mainly of long-chain n-alkanes derived from epicuticular wax coatings of terrestrial plants. Backward trajectories for each sampling day and location were calculated using a global atmospheric circulation model. The main atmospheric transport took place in the low-level trade-wind layer, except in the southern region, where long-range transport in the mid-troposphere occurred. Changes in the chain length distributions of the n-alkane homologous series are probably related to aridity, rather than temperature or vegetation type. The carbon preference of the leaf-wax n-alkanes shows significant variation, attributed to a variable contribution of fossil fuel- or marine-derived lipids. The effect of this nonwax contribution on the d13C values of the two dominant n-alkanes in the aerosols, n-C29 and n-C31 alkane, is, however, insignificant. Their d13C values were translated into a percentage of C4 vs. C3 plant type contribution, using a two-component mixing equation with isotopic end-member values from the literature. The data indicate that only regions with a predominant C4 type vegetation, i.e. the Sahara, the Sahel, and Gabon, supply C4 plant-derived lipids to dust organic matter. The stable carbon isotopic compositions of leaf-wax lipids in aerosols mainly reflect the modern vegetation type along their transport pathway. Wind abrasion of wax particles from leaf surfaces, enhanced by a sandblasting effect, is most probably the dominant process of terrigenous lipid contribution to aerosols.
    Keywords: AEOLD; Aeolian dust sample; ALTITUDE; Calculated, see reference(s); Carbon number of the homologue with highest abundance; Carbon Preference Index, n-Alkanes (C25-C33); D1; D10; D11; D12; D13; D14; D15; D16; D17; D18; D19; D20; D21; D22; D23; D24; D25; D3; D4; D5; D6; D7; D8; D9; Event label; Gas chromatography - Mass spectrometry (GC-MS); GeoB; Geosciences, University of Bremen; Latitude of event; Longitude of event; M41/1; M41/1_D1; M41/1_D10; M41/1_D11; M41/1_D12; M41/1_D13; M41/1_D14; M41/1_D15; M41/1_D16; M41/1_D17; M41/1_D18; M41/1_D19; M41/1_D20; M41/1_D21; M41/1_D22; M41/1_D23; M41/1_D24; M41/1_D25; M41/1_D3; M41/1_D4; M41/1_D5; M41/1_D6; M41/1_D7; M41/1_D8; M41/1_D9; Meteor (1986); n-Alkane, average chain length; n-Alkane, C31/(C29+C31) ratio; n-Alkane, detected carbon number range; n-Alkane C24, δ13C; n-Alkane C25, δ13C; n-Alkane C26, δ13C; n-Alkane C27, δ13C; n-Alkane C28, δ13C; n-Alkane C29, δ13C; n-Alkane C30, δ13C; n-Alkane C31, δ13C; n-Alkane C32, δ13C; n-Alkane C33, δ13C; n-Alkane C4 plant; n-Alkane weighted mean, δ13C
    Type: Dataset
    Format: text/tab-separated-values, 350 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...