GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-01-19
    Description: Geophysical investigations of the northern Hikurangi subduction zone northeast of New Zealand, image fore‐arc and surrounding upper lithospheric structures. A seismic velocity (Vp) field is determined from seismic wide‐angle data, and our structural interpretation is supported by multichannel seismic reflection stratigraphy and gravity and magnetic modeling. We found that the subducting Hikurangi Plateau carries about 2 km of sediments above a 2 km mixed layer of volcaniclastics, limestone, and chert. The upper plateau crust is characterized by Vp = 4.9–6.7 km/s overlying the lower crust with Vp 〉 7.1 km/s. Gravity modeling yields a plateau thickness around 10 km. The reactivated Raukumara fore‐arc basin is 〉10 km deep, deposited on 5–10 km thick Australian crust. The fore‐arc mantle of Vp 〉 8 km/s appears unaffected by subduction hydration processes. The East Cape Ridge fore‐arc high is underlain by a 3.5 km deep strongly magnetic (3.3 A/m) high‐velocity zone, interpreted as part of the onshore Matakaoa volcanic allochthon and/or uplifted Raukumara Basin basement of probable oceanic crustal origin. Beneath the trench slope, we interpret low‐seismic‐velocity, high‐attenuation, low‐density fore‐arc material as accreted and recycled, suggesting that underplating and uplift destabilizes East Cape Ridge, triggering two‐sided mass wasting. Mass balance calculations indicate that the proposed accreted and recycled material represents 25–100% of all incoming sediment, and any remainder could be accounted for through erosion of older accreted material into surrounding basins. We suggest that continental mass flux into the mantle at subduction zones may be significantly overestimated because crustal underplating beneath fore‐arc highs have not properly been accounted for.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-23
    Description: Based on a compilation of published and new seismic refraction and multichannel seismic reflection data along the south central Chile margin (33°–46°S), we study the processes of sediment accretion and subduction and their implications on megathrust seismicity. In terms of the frontal accretionary prism (FAP) size, the marine south central Chile fore arc can be divided in two main segments: (1) the Maule segment (south of the Juan Fernández Ridge and north of the Mocha block) characterized by a relative large FAP (20–40 km wide) and (2) the Chiloé segment (south of the Mocha block and north of the Nazca-Antarctic-South America plates junction) characterized by a small FAP (≤10 km wide). In addition, the Maule and Chiloé segments correlate with a thin (〈1 km thick) and thick (∼1.5 km thick) subduction channel, respectively. The Mocha block lies between ∼37.5° and 40°S and is configured by the Chile trench, Mocha and Valdivia fracture zones. This region separates young (0–25 Ma) oceanic lithosphere in the south from old (30–35 Ma) oceanic lithosphere in the north, and it represents a fundamental tectonic boundary separating two different styles of sediment accretion and subduction, respectively. A process responsible for this segmentation could be related to differences in initial angles of subduction which in turn depend on the amplitude of the down-deflected oceanic lithosphere under trench sediment loading. On the other hand, a small FAP along the Chiloé segment is coincident with the rupture area of the trans-Pacific tsunamigenic 1960 earthquake (Mw = 9.5), while a relatively large FAP along the Maule segment is coincident with the rupture area of the 2010 earthquake (Mw = 8.8). Differences in earthquake and tsunami magnitudes between these events can be explained in terms of the FAP size along the Chiloé and Maule segments that control the location of the updip limit of the seismogenic zone. The rupture area of the 1960 event also correlates with a thick subduction channel (Chiloé segment) that may provide enough smoothness at the subduction interface allowing long lateral earthquake rupture propagation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-04-27
    Description: We present the first detailed 2D seismic tomographic image of the trench-outer rise, fore- and back-arc of the Tonga subduction zone. The study area is located approximately 100 km north of the collision between the Louisville hot spot track and the overriding Indo-Australian plate where ~80 Ma old oceanic Pacific plate subducts at the Tonga Trench. In the outer rise region, the upper oceanic plate is pervasively fractured and most likely hydrated as demonstrated by extensional bending-related faults, anomalously large horst and graben structures, and a reduction of both crustal and mantle velocities. The 2D velocity model presented shows uppermost mantle velocities of ~7.3 km/s, ~10% lower than typical for mantle peridotite (~30% mantle serpentinization). In the model, Tonga arc crust ranges between 7 and 20 km in thickness, and velocities are typical of arc-type igneous basement with uppermost and lowermost crustal velocities of ~3.5 and ~7.1 km/s, respectively. Beneath the inner trench slope, however, the presence of a low velocity zone (4.0–5.5 km/s) suggests that the outer fore-arc is probably fluid-saturated, metamorphosed and disaggregated by fracturing as a consequence of frontal and basal erosion. Tectonic erosion has, most likely, been accelerated by the subduction of the Louisville Ridge, causing crustal thinning and subsidence of the outer fore-arc. Extension in the outer fore-arc is evidenced by (1) trenchward-dipping normal faults and (2) the presence of a giant scarp (~2 km offset and several hundred kilometers long) indicating gravitational collapse of the outermost fore-arc block. In addition, the contact between the subducting slab and the overriding arc crust is only 20 km wide, and the mantle wedge is characterized by low velocities of ~7.5 km/s, suggesting upper mantle serpentinization or the presence of melts frozen in the mantle.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-09-24
    Description: The deep structure of the south-central Costa Rican subduction zone has not been studied in great detail so far because large parts of the area are virtually inaccessible. We present a receiver function study along a transect of broadband seismometers through the northern flank of the Cordillera de Talamanca (south Costa Rica). Below Moho depths, the receiver functions image a dipping positive conversion signal. This is interpreted as the subducting Cocos Plate slab, compatible with the conversions in the individual receiver functions. In finite difference modeling, a dipping signal such as the one imaged can only be reproduced by a steeply (80°) dipping structure present at least until a depth of about 70–100 km; below this depth, the length of the slab cannot be determined because of possible scattering effects. The proposed position of the slab agrees with previous results from local seismicity, local earthquake tomography, and active seismic studies, while extending the slab location to greater depths and steeper dip angle. Along the trench, no marked change is observed in the receiver functions, suggesting that the steeply dipping slab continues until the northern flank of the Cordillera de Talamanca, in the transition region between the incoming seamount segment and Cocos Ridge. Considering the time predicted for the establishment of shallow angle underthrusting after the onset of ridge collision, the southern Costa Rican subduction zone may at present be undergoing a reconfiguration of subduction style, where the transition to shallow underthrusting may be underway but still incomplete.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Wiley
    In:  Geophysical Journal International, 186 (1). pp. 92-112.
    Publication Date: 2019-09-23
    Description: The continental margin of Nicaragua and Costa Rica is characterized by significant lateral changes from north to south such as a decreasing dip of the slab, a decreasing magma production and a shift in the volcanic front. To investigate this transition, a joint on- and offshore local earthquake tomography was performed. Low P-wave velocities and high Vp/Vs ratios, indicative for hydration, were found in the upper-mantle and lowermost crust beneath the Sandino Basin. The mantle wedge hydration can be estimated to 2.5 wt. per cent beneath south Nicaragua. In contrast, the mantle wedge beneath north Costa Rica is weakly or not hydrated. The hydration leads to a local gap in the seismicity in Nicaragua. The lateral transition between the hydrated and non-hydrated areas occurs within a distance of about 10 km. This transition coincides with a change in the crustal thickness in the order of 5–10 km, thickening to the south, and in the tectonic regimes. The change in the tectonic regimes towards a stronger extension along the margin of Nicaragua could be the key for understanding the observations: the extension may support the opening of pathways for a wide zone of fluid migration and hydration through the overriding plate which are identified with areas of low Vp, high Vp/Vs and low seismicity.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-07-13
    Description: Great subduction earthquakes exhibit segmentation both within the rupture of individual events and in the long term history of the margin. The 2004 December 26 Aceh-Andaman and 2005 March 28 Nias event in northern Sumatra are two of the largest earthquakes in recent years, with both co- and post-seismic displacements constrained in unprecedented detail. Using aftershock locations from a temporary seismic array in the boundary region between both events and waveform modelling of large aftershocks, we demonstrate that the vast majority of aftershocks in the study region occur on the plate interface within a narrow band ( 20 km) seaward of the outer arc high. Comparing the seismicity distribution to the co- and post-seismic displacements, we infer that the seismic band marks the transition between the seismogenic zone and stable sliding. The location of the band and therefore the transition appears to be correlated with the ∼500 m bathymetry contour. This close correspondence is disrupted at the boundary between the two great earthquakes, where the transition to seismogenic behaviour occurs further landward by ∼25 km. To the west of Simeulue, where seafloor bathymetry throughout the forearc is deeper than 500 m, the seismic band terminates abruptly and the focus of aftershock activity is found near the trench. The seismic efficiency of afterslip varies dramatically along strike: the segment below the Banyak islands, in the gap between the two main asperities of the Nias earthquake, accommodates a much larger proportion of afterslip seismically.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-07-10
    Description: The structure and seismicity of the subduction zone of centralCosta Rica have been investigated with local earthquake tomography down to ca. 50 km depth. Seismic traveltime data sets of three on- and offshore seismic networks were combined for a simultaneous inversion of hypocentre locations, 3-D structure of P-wave velocity and Vp/Vs ratio using about 2000 highquality events. The seismicity and slab geometry as well as Vp and Vp/Vs show significant lateral variation along the subduction zone corresponding to the changes of the incoming plate which consists of serpentinized oceanic lithosphere in the northwest, a seamount province in the centre and the subducting Cocos Ridge in the southeast of the investigation area. Three prominent features can be identified in the Vp and Vp/Vs tomograms: a high-velocity zone with a perturbation of 4–10 per cent representing the subducting slab, a low-velocity zone (10–20 per cent) in the forearc crust probably caused by deformation, fluid release and hydration and a low-velocity zone below the volcanic arc related to upwelling fluids and magma. Unlike previously suggested, the dip of the subducting slab does not decrease to the south. Instead, an average steepening of the plate interface from 30◦ to 45◦ is observed from north to south and a transition from a plane to a step-shaped plate interface. This is connected with a change in the deformation style of the overriding plate where roughly planar, partly conjugated, clusters of seismicity of regionally varying dip are observed. It can be shown that the central Costa Rica Deformation Belt represents a deep crustal transition zone extending from the surface down to 40 km depth. This transition zone indicates the lateral termination of the active part of the volcanic chain and seems to be related to the changing structure of the incoming plate as well.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geochemistry, Geophysics, Geosystems, 11 (8). Q08S26.
    Publication Date: 2019-09-23
    Description: An array of broadband seismometers transecting the Talamanca Range in southern Costa Rica was operated from 2005 until 2007. In combination with data from a short‐period network near Quepos in central Costa Rica, this data is analyzed by the receiver function method to image the crustal structure in south‐central Costa Rica. Two strong positive signals are seen in the migrated images, interpreted as the Moho (at around 35 km depth) and an intra‐crustal discontinuity (15 km depth). A relatively flat crustal and Moho interface underneath the north‐east flank of the Talamanca Range can be followed for a lateral distance of about 50 km parallel to the trench, with only slight changes in the overall geometry. Closer to the coast, the topography of the discontinuities shows several features, most notably a deeper Moho underneath the Talamanca Mountain Range and volcanic arc. Under the highest part of the mountain ranges, the Moho reaches a depth of about 50 km, which indicates that the mountain ranges are approximately isostatically compensated. Local deviations from the crustal thickness expected for isostatic equilibrium occur under the active volcanic arc and in south Costa Rica. In the transition region between the active volcanic arc and the Talamanca Range, both the Moho and intracrustal discontinuity appear distorted, possibly related to the southern edge of the active volcanic zone and deformation within the southern part of the Central Costa Rica Deformed Belt. Near the volcanoes Irazu and Turrialba, a shallow converter occurs, correlating with a low‐velocity, low‐density body seen in tomography and gravimetry. Applying a grid search for the crustal interface depth and vp/vs ratio cannot constrain vp/vs values well, but points to generally low values (〈1.7) in the upper crust. This is consistent with quartz‐rich rocks forming the mountain range.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-07-10
    Description: We present results of a seismic refraction experiment which determines the crustal and upper-mantle structure of an oceanic core complex (OCC) and its conjugate side located south of the 5°S ridge–transform intersection at the Mid-Atlantic Ridge. The core complex with a corrugated surface has been split by a change in location of active seafloor spreading, resulting in two massifs on either side of the current spreading axis. We applied a joint tomographic inversion of wide-angle reflected and refracted phases for five intersecting seismic profiles. The obtained velocity models are used to constrain the magmatic evolution of the core complex from the analysis of seismic layer 3 and crustal thickness. An abrupt increase of crustal velocities at shallow depth coincides with the onset of the seafloor corrugations at the exposed footwall. The observed velocity structure is consistent with the presence of gabbros directly beneath the corrugated fault surface. The thickness of the high-velocity body is constrained by PmP reflections to vary along and across axis between 〈3 and 5 km. The thickest crust is associated with the central phase of detachment faulting at the higher-elevated northern portion of the massif. Beneath the breakaway of the OCC the crust is 2.5 km thick and reveals significantly lower velocities. This implies that the fault initially exhumed low-velocity material overlying the gabbro plutons. In contrast, crust formed at the conjugate side during OCC formation is characterized by an up to 2-km-thick seismic layer 2 overlying a 1.7-km-thick seismic layer 3. Obtained upper-mantle velocities range from 7.3 to 7.9 km s−1 and seem to increase with distance from the median valley. However, velocities of 7.3–7.5 km s−1 beneath the older portions of the OCC may derive from deep fluid circulation and related hydrothermal alteration, which may likely be facilitated by the subsequent rifting. Our velocity models reveal a strongly asymmetric velocity structure across the ridge axis, associated with the accretion of gabbros into the footwall of the detachment fault and upper-crustal portions concentrated at the conjugate side. Our results do not support a substantial increase in the axial ridge's melt supply related to the final phase of detachment faulting. Hence, the footwall rifting at 5°S may be a generic mechanism of detachment termination under very low melt conditions, as predicted by recent numerical models of Tucholke et al.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...