GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Geophysical Research Letters 42 (2015): 7992–8000, doi:10.1002/2015GL065980.
    Description: Despite the importance of sediment availability on wetland stability, vulnerability assessments seldom consider spatiotemporal variability of sediment transport. Models predict that the maximum rate of sea level rise a marsh can survive is proportional to suspended sediment concentration (SSC) and accretion. In contrast, we find that SSC and accretion are higher in an unstable marsh than in an adjacent stable marsh, suggesting that these metrics cannot describe wetland vulnerability. Therefore, we propose the flood/ebb SSC differential and organic-inorganic suspended sediment ratio as better vulnerability metrics. The unstable marsh favors sediment export (18 mg L−1 higher on ebb tides), while the stable marsh imports sediment (12 mg L−1 higher on flood tides). The organic-inorganic SSC ratio is 84% higher in the unstable marsh, and stable isotopes indicate a source consistent with marsh-derived material. These simple metrics scale with sediment fluxes, integrate spatiotemporal variability, and indicate sediment sources.
    Description: U.S. Geological Survey Coastal and Marine Geology Program; Global Change and Land Use Program
    Keywords: Sediment transport ; Tidal wetlands ; Wetland stability ; Wetland vulnerability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: application/msword
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Environmental Research Letters 13 (2018): 115005, doi:10.1088/1748-9326/aae157.
    Description: Coastal wetlands store carbon dioxide (CO2) and emit CO2 and methane (CH4) making them an important part of greenhouse gas (GHG) inventorying. In the contiguous United States (CONUS), a coastal wetland inventory was recently calculated by combining maps of wetland type and change with soil, biomass, and CH4 flux data from a literature review. We assess uncertainty in this developing carbon monitoring system to quantify confidence in the inventory process itself and to prioritize future research. We provide a value-added analysis by defining types and scales of uncertainty for assumptions, burial and emissions datasets, and wetland maps, simulating 10 000 iterations of a simplified version of the inventory, and performing a sensitivity analysis. Coastal wetlands were likely a source of net-CO2-equivalent (CO2e) emissions from 2006–2011. Although stable estuarine wetlands were likely a CO2e sink, this effect was counteracted by catastrophic soil losses in the Gulf Coast, and CH4 emissions from tidal freshwater wetlands. The direction and magnitude of total CONUS CO2e flux were most sensitive to uncertainty in emissions and burial data, and assumptions about how to calculate the inventory. Critical data uncertainties included CH4 emissions for stable freshwater wetlands and carbon burial rates for all coastal wetlands. Critical assumptions included the average depth of soil affected by erosion events, the method used to convert CH4 fluxes to CO2e, and the fraction of carbon lost to the atmosphere following an erosion event. The inventory was relatively insensitive to mapping uncertainties. Future versions could be improved by collecting additional data, especially the depth affected by loss events, and by better mapping salinity and inundation gradients relevant to key GHG fluxes. Social Media Abstract: US coastal wetlands were a recent and uncertain source of greenhouse gasses because of CH4 and erosion.
    Description: Financial support was provided primarily by NASA Carbon Monitoring Systems (NNH14AY67I) and the USGS Land Carbon Program, with additional support from The Smithsonian Institution, The Coastal Carbon Research Coordination Network (DEB-1655622), and NOAA Grant: NA16NMF4630103.
    Keywords: Coastal wetland ; Carbon cycle ; Tidal wetland ; Saltmarsh ; Mangrove ; Tidal freshwater forest ; Greenhouse gas inventory
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 32 (2018): 389-416, doi:10.1002/2017GB005790.
    Description: Carbon cycling in the coastal zone affects global carbon budgets and is critical for understanding the urgent issues of hypoxia, acidification, and tidal wetland loss. However, there are no regional carbon budgets spanning the three main ecosystems in coastal waters: tidal wetlands, estuaries, and shelf waters. Here we construct such a budget for eastern North America using historical data, empirical models, remote sensing algorithms, and process‐based models. Considering the net fluxes of total carbon at the domain boundaries, 59 ± 12% (± 2 standard errors) of the carbon entering is from rivers and 41 ± 12% is from the atmosphere, while 80 ± 9% of the carbon leaving is exported to the open ocean and 20 ± 9% is buried. Net lateral carbon transfers between the three main ecosystem types are comparable to fluxes at the domain boundaries. Each ecosystem type contributes substantially to exchange with the atmosphere, with CO2 uptake split evenly between tidal wetlands and shelf waters, and estuarine CO2 outgassing offsetting half of the uptake. Similarly, burial is about equal in tidal wetlands and shelf waters, while estuaries play a smaller but still substantial role. The importance of tidal wetlands and estuaries in the overall budget is remarkable given that they, respectively, make up only 2.4 and 8.9% of the study domain area. This study shows that coastal carbon budgets should explicitly include tidal wetlands, estuaries, shelf waters, and the linkages between them; ignoring any of them may produce a biased picture of coastal carbon cycling.
    Description: NASA Interdisciplinary Science program Grant Number: NNX14AF93G; NASA Carbon Cycle Science Program Grant Number: NNX14AM37G; NASA Ocean Biology and Biogeochemistry Program Grant Number: NNX11AD47G; National Science Foundation's Chemical Oceanography Program Grant Number: OCE‐1260574
    Description: 2018-10-04
    Keywords: Carbon cycle ; Coastal zone ; Tidal wetlands ; Estuaries ; Shelf waters
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Scientific Reports 8 (2018): 15219, doi:10.1038/s41598-018-33283-4.
    Description: This Article corrects an error in Equation 1
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Science Advances 4 (2018): eaat1869, doi:10.1126/sciadv.aat1869.
    Description: Limiting climate warming to 〈2°C requires increased mitigation efforts, including land stewardship, whose potential in the United States is poorly understood. We quantified the potential of natural climate solutions (NCS)—21 conservation, restoration, and improved land management interventions on natural and agricultural lands—to increase carbon storage and avoid greenhouse gas emissions in the United States. We found a maximum potential of 1.2 (0.9 to 1.6) Pg CO2e year−1, the equivalent of 21% of current net annual emissions of the United States. At current carbon market prices (USD 10 per Mg CO2e), 299 Tg CO2e year−1 could be achieved. NCS would also provide air and water filtration, flood control, soil health, wildlife habitat, and climate resilience benefits.
    Description: This study was made possible by funding from the Doris Duke Charitable Foundation. C.A.W. and H.G. acknowledge financial support from NASA’s Carbon Monitoring System program (NNH14ZDA001N-CMS) under award NNX14AR39G. S.D.B. acknowledges support from the DOE’s Office of Biological and Environmental Research Program under the award DE-SC0014416. J.W.F. acknowledges financial support from the Florida Coastal Everglades Long-Term Ecological Research program under National Science Foundation grant no. DEB-1237517.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Limnology and Oceanography 61 (2016): 1916–1931, doi:10.1002/lno.10347.
    Description: Dynamic tidal export of dissolved inorganic carbon (DIC) to the coastal ocean from highly productive intertidal marshes and its effects on seawater carbonate chemistry are thoroughly evaluated. The study uses a comprehensive approach by combining tidal water sampling of CO2 parameters across seasons, continuous in situ measurements of biogeochemically-relevant parameters and water fluxes, with high-resolution modeling in an intertidal salt marsh of the U.S. northeast region. Salt marshes can acidify and alkalize tidal water by injecting CO2 (DIC) and total alkalinity (TA). DIC and TA generation may also be decoupled due to differential effects of marsh aerobic and anaerobic respiration on DIC and TA. As marsh DIC is added to tidal water, the buffering capacity first decreases to a minimum and then increases quickly. Large additions of marsh DIC can result in higher buffering capacity in ebbing tide than incoming tide. Alkalization of tidal water, which mostly occurs in the summer due to anaerobic respiration, can further modify buffering capacity. Marsh exports of DIC and alkalinity may have complex implications for the future, more acidified ocean. Marsh DIC export exhibits high variability over tidal and seasonal cycles, which is modulated by both marsh DIC generation and by water fluxes. The marsh DIC export of 414 g C m−2 yr−1, based on high-resolution measurements and modeling, is more than twice the previous estimates. It is a major term in the marsh carbon budget and translates to one of the largest carbon fluxes along the U.S. East Coast.
    Description: USGS Coastal & Marine Geology Program; U.S. National Science Foundation Grant Number: OCE-1459521; NOAA Science Collaborative Grant Number: NA09NOS4190153; USGS LandCarbon Program
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Hydrology: Regional Studies 11 (2017): 147-165, doi:10.1016/j.ejrh.2015.12.056.
    Description: The study region encompasses the nearshore, coastal waters off west Maui, Hawaii. Here abundant groundwater—that carries with it a strong land-based fingerprint—discharges into the coastal waters and over a coral reef. Coastal groundwater discharge is a ubiquitous hydrologic feature that has been shown to impact nearshore ecosystems and material budgets. A unique combined geochemical tracer and oceanographic time-series study addressed rates and oceanic forcings of submarine groundwater discharge at a submarine spring site off west Maui, Hawaii. Estimates of submarine groundwater discharge were derived for a primary vent site and surrounding coastal waters off west Maui, Hawaii using an excess 222Rn (t1/2 = 3.8 d) mass balance model. Such estimates were complemented with a novel thoron (220Rn, t1/2 = 56 s) groundwater discharge tracer application, as well as oceanographic time series and thermal infrared imagery analyses. In combination, this suite of techniques provides new insight into the connectivity of the coastal aquifer with the near-shore ocean and examines the physical drivers of submarine groundwater discharge. Lastly, submarine groundwater discharge derived constituent concentrations were tabulated and compared to surrounding seawater concentrations. Such work has implications for the management of coastal aquifers and downstream nearshore ecosystems that respond to sustained constituent loadings via this submarine route.
    Description: This research was primarily funded by the USGS Coastal and Marine Geology Program (CMGP). CRG acknowledges support from the National Oceanic and Atmospheric Administration, Project R/SB-12, which is sponsored by the University of Hawaii Sea Grant College Program, SOEST, under Institutional Grant No. NA14OAR4170071 from NOAA Office of Sea Grant, Department of Commerce.
    Keywords: Regional groundwater flow ; Submarine groundwater discharge ; Radon ; Thoron ; Thermal infrared ; Oceanographic time series ; Salinity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Scientific Reports 8 (2018): 9478, doi:10.1038/s41598-018-26948-7.
    Description: Tidal wetlands produce long-term soil organic carbon (C) stocks. Thus for carbon accounting purposes, we need accurate and precise information on the magnitude and spatial distribution of those stocks. We assembled and analyzed an unprecedented soil core dataset, and tested three strategies for mapping carbon stocks: applying the average value from the synthesis to mapped tidal wetlands, applying models fit using empirical data and applied using soil, vegetation and salinity maps, and relying on independently generated soil carbon maps. Soil carbon stocks were far lower on average and varied less spatially and with depth than stocks calculated from available soils maps. Further, variation in carbon density was not well-predicted based on climate, salinity, vegetation, or soil classes. Instead, the assembled dataset showed that carbon density across the conterminous united states (CONUS) was normally distributed, with a predictable range of observations. We identified the simplest strategy, applying mean carbon density (27.0 kg C m−3), as the best performing strategy, and conservatively estimated that the top meter of CONUS tidal wetland soil contains 0.72 petagrams C. This strategy could provide standardization in CONUS tidal carbon accounting until such a time as modeling and mapping advancements can quantitatively improve accuracy and precision.
    Description: Synthesis efforts were funded by NASA Carbon Monitoring System (CMS; NNH14AY67I), USGS LandCarbon and the Smithsonian Institution. J.R.H. was additionally supported by the NSF-funded Coastal Carbon Research Coordination Network while completing this manuscript (DEB-1655622). J.M.S. coring efforts were funded by NSF (EAR-1204079). B.P.H. coring efforts were funded by Earth Observatory (Publication Number 197).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Marine Chemistry 206 (2018): 7-18, doi:10.1016/j.marchem.2018.08.005.
    Description: The lateral export of carbon from coastal marshes via tidal exchange is a key component of the marsh carbon budget and coastal carbon cycles. However, the magnitude of this export has been difficult to accurately quantify due to complex tidal dynamics and seasonal cycling of carbon. In this study, we use in situ, high-frequency measurements of dissolved inorganic carbon (DIC) and water fluxes to estimate lateral DIC fluxes from a U.S. northeastern salt marsh. DIC was measured by a CHANnelized Optical Sensor (CHANOS) that provided an in situ concentration measurement at 15-min intervals, during periods in summer (July – August) and late fall (December). Seasonal changes in the marsh had strong effects on DIC concentrations, while tidally-driven water fluxes were the fundamental vehicle of marsh carbon export. Episodic events, such as groundwater discharge and mean sea water level changes, can impact DIC flux through altered DIC concentrations and water flow. Variability between individual tides within each season was comparable to mean variability between the two seasons. Estimated mean DIC fluxes based on a multiple linear regression (MLR) model of DIC concentrations and high-frequency water fluxes agreed reasonably well with those derived from CHANOS DIC measurements for both study periods, indicating that high-frequency, modeled DIC concentrations, coupled with continuous water flux measurements and a hydrodynamic model, provide a robust estimate of DIC flux. Additionally, an analysis of sampling strategies revealed that DIC fluxes calculated using conventional sampling frequencies (hourly to two-hourly) of a single tidal cycle are unlikely to capture a representative mean DIC flux compared to longer-term measurements across multiple tidal cycles with sampling frequency on the order of tens of minutes. This results from a disproportionately large amount of the net DIC flux occurring over a small number of tidal cycles, while most tides have a near-zero DIC export. Thus, high-frequency measurements (on the order of tens of minutes or better) over the time period of interest are necessary to accurately quantify tidal exports of carbon species from salt marshes.
    Description: This work was funded by NSF Graduate Research Fellowship Program, NSF Ocean Sciences Postdoctoral Fellowship (OCE-1323728), Link FoundationOcean Engineering and Instrumentation Fellowship, National Institute of Science and Technology (NIST no. 60NANB10D024), the USGS LandCarbon and Coastal & Marine Geology Programs, NSF Chemical Oceanography Program (OCE-1459521), NSF Ocean Technology and Interdisciplinary Coordination program (OCE-1233654) and NOAA Science Collaborative (NA09NOS4190153).
    Keywords: Dissolved inorganic carbon ; Carbon export ; Salt marshes ; Wetlands
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Biogeosciences 123 (2018): 2234-2256, doi:10.1029/2018JG004556.
    Description: Coastal salt marshes play an important role in mitigating global warming by removing atmospheric carbon at a high rate. We investigated the environmental controls and emergent scaling of major greenhouse gas (GHG) fluxes such as carbon dioxide (CO2) and methane (CH4) in coastal salt marshes by conducting data analytics and empirical modeling. The underlying hypothesis is that the salt marsh GHG fluxes follow emergent scaling relationships with their environmental drivers, leading to parsimonious predictive models. CO2 and CH4 fluxes, photosynthetically active radiation (PAR), air and soil temperatures, well water level, soil moisture, and porewater pH and salinity were measured during May–October 2013 from four marshes in Waquoit Bay and adjacent estuaries, MA, USA. The salt marshes exhibited high CO2 uptake and low CH4 emission, which did not significantly vary with the nitrogen loading gradient (5–126 kg · ha−1 · year−1) among the salt marshes. Soil temperature was the strongest driver of both fluxes, representing 2 and 4–5 times higher influence than PAR and salinity, respectively. Well water level, soil moisture, and pH did not have a predictive control on the GHG fluxes, although both fluxes were significantly higher during high tides than low tides. The results were leveraged to develop emergent power law‐based parsimonious scaling models to accurately predict the salt marsh GHG fluxes from PAR, soil temperature, and salinity (Nash‐Sutcliffe Efficiency = 0.80–0.91). The scaling models are available as a user‐friendly Excel spreadsheet named Coastal Wetland GHG Model to explore scenarios of GHG fluxes in tidal marshes under a changing climate and environment.
    Description: National Oceanic and Atmospheric Administration Grant Numbers: NA09NOS4190153, NA14NOS4190145; National Science Foundation (NSF) Grant Numbers: 1705941, 1561941/1336911; USGS LandCarbon Program; NOAA National Estuarine Research Reserve Science Collaborative Grant Number: NA09NOS4190153 and NA14NOS4190145
    Description: 2019-01-28
    Keywords: Coastal salt marshes ; GHG fluxes ; Environmental controls ; Emergent scaling ; Modeling and predictions
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...