GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Environmental Research Letters 13 (2018): 115005, doi:10.1088/1748-9326/aae157.
    Description: Coastal wetlands store carbon dioxide (CO2) and emit CO2 and methane (CH4) making them an important part of greenhouse gas (GHG) inventorying. In the contiguous United States (CONUS), a coastal wetland inventory was recently calculated by combining maps of wetland type and change with soil, biomass, and CH4 flux data from a literature review. We assess uncertainty in this developing carbon monitoring system to quantify confidence in the inventory process itself and to prioritize future research. We provide a value-added analysis by defining types and scales of uncertainty for assumptions, burial and emissions datasets, and wetland maps, simulating 10 000 iterations of a simplified version of the inventory, and performing a sensitivity analysis. Coastal wetlands were likely a source of net-CO2-equivalent (CO2e) emissions from 2006–2011. Although stable estuarine wetlands were likely a CO2e sink, this effect was counteracted by catastrophic soil losses in the Gulf Coast, and CH4 emissions from tidal freshwater wetlands. The direction and magnitude of total CONUS CO2e flux were most sensitive to uncertainty in emissions and burial data, and assumptions about how to calculate the inventory. Critical data uncertainties included CH4 emissions for stable freshwater wetlands and carbon burial rates for all coastal wetlands. Critical assumptions included the average depth of soil affected by erosion events, the method used to convert CH4 fluxes to CO2e, and the fraction of carbon lost to the atmosphere following an erosion event. The inventory was relatively insensitive to mapping uncertainties. Future versions could be improved by collecting additional data, especially the depth affected by loss events, and by better mapping salinity and inundation gradients relevant to key GHG fluxes. Social Media Abstract: US coastal wetlands were a recent and uncertain source of greenhouse gasses because of CH4 and erosion.
    Description: Financial support was provided primarily by NASA Carbon Monitoring Systems (NNH14AY67I) and the USGS Land Carbon Program, with additional support from The Smithsonian Institution, The Coastal Carbon Research Coordination Network (DEB-1655622), and NOAA Grant: NA16NMF4630103.
    Keywords: Coastal wetland ; Carbon cycle ; Tidal wetland ; Saltmarsh ; Mangrove ; Tidal freshwater forest ; Greenhouse gas inventory
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 40 (2013): 2701–2706, doi:10.1002/grl.50192.
    Description: To better understand the physical drivers of submarine groundwater discharge (SGD) in the coastal ocean, we conducted a detailed field and modeling study within an unconfined coastal aquifer system. We monitored the hydraulic gradient across the coastal aquifer and movement of the mixing zone over multiple years. At our study site, sea level dominated over groundwater head as the largest contributor to variability in the hydraulic gradient and therefore SGD. Model results indicate the seawater recirculation component of SGD was enhanced during summer while the terrestrial component dominated during winter due to seasonal changes in sea level driven by a combination of long period solar tides, temperature and winds. In one year, sea level remained elevated year round due to a combination of ENSO and NAO climate modes. Hence, predicted changes in regional climate variability driven sea level may impact future rates of SGD and biogeochemical cycling within coastal aquifers.
    Description: This work is a result of research sponsored by the NSF Chemical Oceanography program (OCE- 0425061 to M.C. and A.M. and OCE-0751525 to M.C.) and an NDSEG graduate fellowship (to M.G.).
    Description: 2013-12-03
    Keywords: Groundwater ; Sea level ; Climate ; Submarine groundwater discharge ; Coastal aquifer
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: text/plain
    Format: application/msword
    Format: image/tiff
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2013. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Geochimica et Cosmochimica Acta 117 (2013): 33-52, doi:10.1016/j.gca.2013.03.021.
    Description: Submarine groundwater discharge (SGD) to the ocean supplies Sr with less radiogenic 87Sr/86Sr than seawater, and thus constitutes an important term in the Sr isotope budget in the modern ocean. However, few data exist for Sr in coastal groundwater or in the geochemically dynamic subterranean estuary (STE). We examined Sr concentrations and isotope ratios from nine globally-distributed coastal sites and characterized the behavior of Sr in the STE. Dissolved Sr generally mixed conservatively in the STE, although large differences were observed in the meteoric groundwater end-member Sr concentrations among sites (0.1 – 24 μM Sr). Strontium isotope exchange was observed in the STE at five of the sites studied, and invariably favored the meteoric groundwater end-member signature. Most of the observed isotope exchange occurred in the salinity range 5-15, and reached up to 40% exchange at salinity 10. Differences in fresh groundwater Sr concentrations and isotope ratios (87Sr/86Sr = 0.707-0.710) reflected aquifer lithology. The SGD end-member 87Sr/86Sr must be lower than modern seawater (i.e., less than 0.70916) in part because groundwater Sr concentrations are orders of magnitude higher in less-carbonate and volcanic island aquifers. A simple lithological model and groundwater Sr data compiled from the literature were used to estimate a global average groundwater end-member of 2.9 μM Sr with 87Sr/86Sr = 0.7089. This represents a meteoric-SGD-driven Sr input to the ocean of 0.7-2.8 × 1010 mol Sr y-1. Meteoric SGD therefore accounts for 2-8% of the oceanic Sr isotope budget, comparable to other known source terms, but is insufficient to balance the remainder of the budget. Using reported estimates for brackish SGD, the estimated volume discharge at salinity 10 (7-11 × 1015 L y-1) was used to evaluate the impact of isotope exchange in the STE on the brackish SGD Sr flux. A moderate estimate of 25% isotope exchange in the STE gives an SGD Sr end-member 87Sr/86Sr of 0.7091. The brackish SGD Sr flux thus accounts for 11-23% of the marine Sr isotope budget, but does not appear sufficient to balance the ~40% remaining after other known sources are included. Substantial uncertainties remain for estimating the SGD source of Sr to the global ocean, especially in the determination of the volume flux of meteoric SGD, and in the paucity of measurements of groundwater Sr isotope composition in major SGD regions such as Papua New Guinea, the South America west coast, and West Africa. Consequently, our global estimate should be viewed with some caution. Nevertheless, we show that the combined sources of meteoric SGD and brackish SGD coupled with isotope exchange in the STE may constitute a substantial component (~13-30%) of the modern oceanic 87Sr/86Sr budget, likely exceeding less radiogenic Sr inputs by sedimentary diagenesis and hydrothermal circulation through the mid-ocean ridge system. Temporal variation in SGD Sr fluxes and isotope composition may have contributed to fluctuations in the oceanic 87Sr/86Sr ratio over geologic time.
    Description: This project was supported by funding from the WHOI Coastal Ocean 670 Institute and the Tropical Research Initiative, and NSF OCE-0751525 to MAC. BPE acknowledges financial support from NSF ETBC-85101500 and a WHOI Coastal Ocean Institute Fellowship.
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 32 (2017): 146–160, doi:10.1002/2016PA002976.
    Description: Coral skeletons are valuable archives of past ocean conditions. However, interpretation of coral paleotemperature records is confounded by uncertainties associated with single-element ratio thermometers, including Sr/Ca. A new approach, Sr-U, uses U/Ca to constrain the influence of Rayleigh fractionation on Sr/Ca. Here we build on the initial Pacific Porites Sr-U calibration to include multiple Atlantic and Pacific coral genera from multiple coral reef locations spanning a temperature range of 23.15–30.12°C. Accounting for the wintertime growth cessation of one Bermuda coral, we show that Sr-U is strongly correlated with the average water temperature at each location (r2 = 0.91, P 〈 0.001, n = 19). We applied the multispecies spatial calibration between Sr-U and temperature to reconstruct a 96 year long temperature record at Mona Island, Puerto Rico, using a coral not included in the calibration. Average Sr-U derived temperature for the period 1900–1996 is within 0.12°C of the average instrumental temperature at this site and captures the twentieth century warming trend of 0.06°C per decade. Sr-U also captures the timing of multiyear variability but with higher amplitude than implied by the instrumental data. Mean Sr-U temperatures and patterns of multiyear variability were replicated in a second coral in the same grid box. Conversely, Sr/Ca records from the same two corals were inconsistent with each other and failed to capture absolute sea temperatures, timing of multiyear variability, or the twentieth century warming trend. Our results suggest that coral Sr-U paleothermometry is a promising new tool for reconstruction of past ocean temperatures.
    Description: NSF Graduate Research Fellowships Grant Numbers: NSF-OCE-1338320, NSF-OCE-1031971, NSF-OCE-0926986; WHOI Access to the Sea Grant Numbers: 27500056, 0734826; NSF HRD; UPR Central Administration to EAHD through the Center for Applied Tropical Ecology and Conservation of UPR
    Description: 2017-08-16
    Keywords: Coral ; Temperature ; Paleoceangraphy ; Paleothermometry ; Global warming ; Biomineralization
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Scientific Reports 8 (2018): 15219, doi:10.1038/s41598-018-33283-4.
    Description: This Article corrects an error in Equation 1
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © Elsevier B.V., 2007. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Marine Chemistry 110 (2008): 120-127, doi:10.1016/j.marchem.2008.02.011.
    Description: Submarine groundwater discharge (SGD), in form of springs and diffuse seepage, has long been recognized as a source of chemical constituents to the coastal ocean. Because groundwater is two to four orders of magnitude richer in radon than surface water, it has been used as both a qualitative and a quantitative tracer of groundwater discharge. Besides this large activity gradient, the other perceived advantage of radon stems from its classification as noble gas; that is, its chemical behavior is expected not to be influenced by salinity, redox, and diagenetic conditions present in aquatic environments. During our three-year monthly sampling of the subterranean estuary (STE) in Waquoit Bay, MA, we found highly variable radon activities (50-1600 dpm L-1) across the fresh-saline interface of the aquifer. We monitored pore water chemistry and radon activity at 8 fixed depths spanning from 2 to 5.6 m across the STE, and found seasonal fluctuations in activity at depths where elevated radon was observed. We postulate that most of pore water 222Rn is produced from particle-surface bound 226Ra, and that the accumulation of this radium is likely regulated by the presence of manganese (hydr)oxides. Layers of manganese (hydr)oxides form at the salinity transition zone (STZ), where water with high salinity, high manganese, and low redox potential mixes with fresh water. Responding to the seasonality of aquifer recharge, the location of the STZ and the layers with radium enriched manganese (hydr)oxide follows the seasonal land- or bay-ward movement of the freshwater lens. This results in seasonal changes in the depth where elevated radon activities are observed. The conclusion of our study is that the freshwater part of the STE has a radon signature that is completely different from the STZ or recirculated sea water. Therefore, the radon activity in SGD will depend on the ratio of fresh and recirculated seawater in the discharging groundwater.
    Description: This work is a result of research sponsored by NSF (OCE- 0425061 to M.A.C.) and the WHOI Postdoctoral Scholar program (to H.D.).
    Keywords: Subterranean estuary ; Geochemical tracers ; Radon ; Radium ; Manganese ; Groundwater ; Submarine groundwater discharge ; Geochemical transformations
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Journal of Environmental Radioactivity 104 (2012): 24-45, doi:10.1016/j.jenvrad.2011.09.009.
    Description: Submarine groundwater discharge (SGD) into a shallow lagoon on the west coast of Mauritius Island (Flic-en-Flac) was investigated using radioactive (3H, 222Rn, 223Ra, 224Ra, 226Ra, 228Ra) and stable (2H, 18O) isotopes and nutrients. SGD intercomparison exercises were carried out to validate the various approaches used to measure SGD including radium and radon measurements, seepage-rate measurements using manual and automated meters, sediment bulk conductivity and salinity surveys. SGD measurements using benthic chambers placed on the floor of the Flic-en-Flac Lagoon showed discharge rates up to 500 cm/day. Large variability in SGD was observed over distances of a few meters, which were attributed to different geomorphological features. Deployments of automated seepage meters captured the spatial and temporal variability of SGD with a mean seepage rate of 10 cm/day. The stable isotopic composition of submarine waters was characterized by significant variability and heavy isotope enrichment and was used to predict the contribution of fresh terrestrially derived groundwater to SGD (range from a few % to almost 100 %). The integrated SGD flux, estimated from seepage meters placed parallel to the shoreline, was 35 m3/m day, which was in a reasonable agreement with results obtained from hydrologic water balance calculation (26 m3/m day). SGD calculated from the radon inventory method using in situ radon measurements were between 5 and 56 m3/m per day. Low concentrations of radium isotopes observed in the lagoon water reflected the low abundance of U and Th in the basalt that makes up the island. High SGD rates contribute to high nutrients loading to the lagoon, potentially leading to eutrophication. Each of the applied methods yielded unique information about the character and magnitude of SGD. The results of the intercomparison studies have resulted a better understanding of groundwater-seawater interactions in coastal regions. Such information is an important pre-requisite for the protection management of coastal freshwater resources.
    Description: The financial support provided by the IOC and IHP of UNESCO for travel arrangements, and by the IAEA’s Marine Environment Laboratories for logistics is highly acknowledged. MAC and MEG were supported in part by the US National Science Foundation (OCE-0425061 and OCE-0751525). PPP acknowledges a support provided by the EU Research & Development Operational Program funded by the ERDF (project No. 26240220004), and the Slovak Scientific Agency VEGA (grant No. 1/108/08). The International Atomic Energy Agency is grateful to the Government of the Principality of Monaco for support provided to its Marine Environment Laboratories.
    Keywords: Submarine groundwater discharge ; Groundwater ; Seawater ; Seepage meters ; Stable isotopes ; δD ; δ18O ; Tritium ; Radium isotopes ; Radon ; Nutrients ; Coastal zone ; Volcanic island ; Mauritius Island
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2014
    Description: At the land-ocean interface, terrestrial groundwater interacts with seawater to form a subterranean estuary, which can play host to dynamic biogeochemical cycling of nutrients, trace metals and radionuclides. This chemically altered groundwater enters the ocean through submarine groundwater discharge (SGD), a process that is driven by a number of physical processes acting on aquifers and the coastal ocean. In this thesis, seasonal variability in chemical cycling and associated loading to the coastal ocean was observed in a monthly time series within the Waquoit Bay (MA, USA) subterranean estuary. The position of the aquifer mixing zone moved seaward with an increase in hydraulic gradient, resulting in low salinity conditions and reduced mixing, while a decrease in gradient led to landward movement, high salinity groundwater and enhanced mixing. At this location, seasonal variability in sea level, not groundwater level, was the dominant variable driving the hydraulic gradient and therefore SGD. Fluxes of sediment bound cations to the ocean increased coincidently with sea level rise due to desorption. There was enhanced nitrogen attenuation during winter, potentially due to longer groundwater residence times, with greater nutrient delivery to coastal waters during the spring and summer bloom. Interannual climate fluctuations that control sea level and precipitation may ultimately control the timing and magnitude of chemical and water flux via SGD. In addition to temporal variability, aquifer lithology influences chemical export. This thesis also demonstrates that SGD from karst subterranean estuaries may play a role in local and global element budgets. The potential for the chemical signature of SGD to be recorded in the coral record was tested through a combination of coral culture experiments and field and modeling studies in the Yucatan Peninsula. Coral barium was well correlated with precipitation for a twelve-year record, with coral geochemistry reflecting the passage of a hurricane in 2002. While additional complexities in deciphering coral records remain, this proxy offers the potential to extend SGD records into the past.
    Description: This research was supported by a National Defense Science and Engineering Graduate Fellowship, a National Estuarine Research Reserve Graduate Fellowship from the National Oceanic and Atmospheric Administration, and grants from the U.S. Geological Survey (G10AC00210) and the U.S. National Science Foundation (OCE-0425061, OCE-0751525 and OCE-0524994). Additional funds were provided by the WHOI Academic Programs Office, WHOI Ocean and Climate Change Institute, and MIT endowed funds.
    Keywords: Biogeochemical cycles ; Chemical oceanography
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Limnology and Oceanography 61 (2016): 1916–1931, doi:10.1002/lno.10347.
    Description: Dynamic tidal export of dissolved inorganic carbon (DIC) to the coastal ocean from highly productive intertidal marshes and its effects on seawater carbonate chemistry are thoroughly evaluated. The study uses a comprehensive approach by combining tidal water sampling of CO2 parameters across seasons, continuous in situ measurements of biogeochemically-relevant parameters and water fluxes, with high-resolution modeling in an intertidal salt marsh of the U.S. northeast region. Salt marshes can acidify and alkalize tidal water by injecting CO2 (DIC) and total alkalinity (TA). DIC and TA generation may also be decoupled due to differential effects of marsh aerobic and anaerobic respiration on DIC and TA. As marsh DIC is added to tidal water, the buffering capacity first decreases to a minimum and then increases quickly. Large additions of marsh DIC can result in higher buffering capacity in ebbing tide than incoming tide. Alkalization of tidal water, which mostly occurs in the summer due to anaerobic respiration, can further modify buffering capacity. Marsh exports of DIC and alkalinity may have complex implications for the future, more acidified ocean. Marsh DIC export exhibits high variability over tidal and seasonal cycles, which is modulated by both marsh DIC generation and by water fluxes. The marsh DIC export of 414 g C m−2 yr−1, based on high-resolution measurements and modeling, is more than twice the previous estimates. It is a major term in the marsh carbon budget and translates to one of the largest carbon fluxes along the U.S. East Coast.
    Description: USGS Coastal & Marine Geology Program; U.S. National Science Foundation Grant Number: OCE-1459521; NOAA Science Collaborative Grant Number: NA09NOS4190153; USGS LandCarbon Program
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-25
    Description: This paper is not subject to U.S. copyright. The definitive version was published in Geochimica et Cosmochimica Acta 209 (2017): 123-134, doi:10.1016/j.gca.2017.04.006.
    Description: Coral barium to calcium (Ba/Ca) ratios have been used to reconstruct records of upwelling, river and groundwater discharge, and sediment and dust input to the coastal ocean. However, this proxy has not yet been explicitly tested to determine if Ba inclusion in the coral skeleton is directly proportional to seawater Ba concentration and to further determine how additional factors such as temperature and calcification rate control coral Ba/Ca ratios. We measured the inclusion of Ba within aquaria reared juvenile corals (Favia fragum) at three temperatures (∼27.7, 24.6 and 22.5 °C) and three seawater Ba concentrations (73, 230 and 450 nmol kg−1). Coral polyps were settled on tiles conditioned with encrusting coralline algae, which complicated chemical analysis of the coral skeletal material grown during the aquaria experiments. We utilized Sr/Ca ratios of encrusting coralline algae (as low as 3.4 mmol mol−1) to correct coral Ba/Ca for this contamination, which was determined to be 26 ± 11% using a two end member mixing model. Notably, there was a large range in Ba/Ca across all treatments, however, we found that Ba inclusion was linear across the full concentration range. The temperature sensitivity of the distribution coefficient is within the range of previously reported values. Finally, calcification rate, which displayed large variability, was not correlated to the distribution coefficient. The observed temperature dependence predicts a change in coral Ba/Ca ratios of 1.1 μmol mol−1 from 20 to 28 °C for typical coastal ocean Ba concentrations of 50 nmol kg−1. Given the linear uptake of Ba by corals observed in this study, coral proxy records that demonstrate peaks of 10–25 μmol mol−1 would require coastal seawater Ba of between 60 and 145 nmol kg−1. Further validation of the coral Ba/Ca proxy requires evaluation of changes in seawater chemistry associated with the environmental perturbation recorded by the coral as well as verification of these results for Porites species, which are widely used in paleo reconstructions.
    Description: M.E.G. was supported by a NDSEG graduate fellowship. Funding for this research came from the NSF Chemical Oceanography program (OCE-0751525) and the Coastal Ocean Institute, the Ocean and Climate Change Institute and the Ocean Ventures Fund at Woods Hole Oceanographic Institution.
    Keywords: Coral Ba/Ca ; Barium ; Aragonite ; Distribution coefficient ; Favia fragum
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...