GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Elsevier  (10)
  • ASLO (Association for the Sciences of Limnology and Oceanography)  (2)
  • MDPI  (2)
  • Copernicus Publications (EGU)  (1)
  • 2015-2019  (15)
  • 1
    Publication Date: 2020-02-06
    Description: Highlights • Deep-sea mineral exploration and exploitation licenses have been issued recently. • Mining will modify the abiotic and biotic environment. • At directly mined sites, species are removed and cannot resist disturbance. • Recovery is highly variable in distinct ecosystems and among benthic taxa. • Community changes may persist over geological time-scales at directly mined sites. Abstract With increasing demand for mineral resources, extraction of polymetallic sulphides at hydrothermal vents, cobalt-rich ferromanganese crusts at seamounts, and polymetallic nodules on abyssal plains may be imminent. Here, we shortly introduce ecosystem characteristics of mining areas, report on recent mining developments, and identify potential stress and disturbances created by mining. We analyze species’ potential resistance to future mining and perform meta-analyses on population density and diversity recovery after disturbances most similar to mining: volcanic eruptions at vents, fisheries on seamounts, and experiments that mimic nodule mining on abyssal plains. We report wide variation in recovery rates among taxa, size, and mobility of fauna. While densities and diversities of some taxa can recover to or even exceed pre-disturbance levels, community composition remains affected after decades. The loss of hard substrata or alteration of substrata composition may cause substantial community shifts that persist over geological timescales at mined sites.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-06
    Description: The knowledge of the phase behavior of carbon dioxide (CO2)-rich mixtures is a key factor to understand the chemistry and migration of natural volcanic CO2 seeps in the marine environment, as well as to develop engineering processes for CO2 sequestration coupled to methane (CH4) production from gas hydrate deposits. In both cases, it is important to gain insights into the interactions of the CO2-rich phase—liquid or gas—with the aqueous medium (H2O) in the pore space below the seafloor or in the ocean. Thus, the CH4-CO2 binary and CH4-CO2-H2O ternary mixtures were investigated at relevant pressure and temperature conditions. The solubility of CH4 in liquid CO2 (vapor-liquid equilibrium) was determined in laboratory experiments and then modelled with the Soave–Redlich–Kwong equation of state (EoS) consisting of an optimized binary interaction parameter kij(CH4-CO2) = 1.32 × 10−3 × T − 0.251 describing the non-ideality of the mixture. The hydrate-liquid-liquid equilibrium (HLLE) was measured in addition to the composition of the CO2-rich fluid phase in the presence of H2O. In contrast to the behavior in the presence of vapor, gas hydrates become more stable when increasing the CH4 content, and the relative proportion of CH4 to CO2 decreases in the CO2-rich phase after gas hydrate formation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-03-18
    Description: This article presents gas hydrate experimental measurements for mixtures containing methane (CH4), carbon dioxide (CO2) and nitrogen (N2) with the aim to better understand the impact of water (H2O) on the phase equilibrium. Some of these phase equilibrium experiments were carried out with a very high water-to-gas ratio that shifts the gas hydrate dissociation points to higher pressures. This is due to the significantly different solubilities of the different guest molecules in liquid H2O. A second experiment focused on CH4-CO2 exchange between the hydrate and the vapor phases at moderate pressures. The results show a high retention of CO2 in the gas hydrate phase with small pressure variations within the first hours. However, for our system containing 10.2 g of H2O full conversion of the CH4 hydrate grains to CO2 hydrate is estimated to require 40 days. This delay is attributed to the shrinking core effect, where initially an outer layer of CO2-rich hydrate is formed that effectively slows down the further gas exchange between the vapor phase and the inner core of the CH4-rich hydrate grain.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-02-01
    Description: Large quantities of the greenhouse gas methane (CH4) are stored in the seafloor. The flux of CH4 from the sediments into the water column and finally to the atmosphere is mitigated by a series of microbial methanotrophic filter systems of unknown efficiency at highly active CH4-release sites in shallow marine settings. Here, we studied CH4-oxidation and the methanotrophic community at a high-CH4-flux site in the northern North Sea (well 22/4b), where CH4 is continuously released since a blowout in 1990. Vigorous bubble emanation from the seafloor and strongly elevated CH4 concentrations in the water column (up to 42 µM) indicated that a substantial fraction of CH4 bypassed the highly active (up to ∼2920 nmol cm−3 d−1) zone of anaerobic CH4-oxidation in sediments. In the water column, we measured rates of aerobic CH4-oxidation (up to 498 nM d−1) that were among the highest ever measured in a marine environment and, under stratified conditions, have the potential to remove a significant part of the uprising CH4 prior to evasion to the atmosphere. An unusual dominance of the water-column methanotrophs by Type II methane-oxidizing bacteria (MOB) is partially supported by recruitment of sedimentary MOB, which are entrained together with sediment particles in the CH4 bubble plume. Our study thus provides evidence that bubble emission can be an important vector for the transport of sediment-borne microbial inocula, aiding in the rapid colonization of the water column by methanotrophic communities and promoting their persistence close to highly active CH4 point sources.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-02-06
    Description: Highlights • A stack of four BSRs were identified in levee deposits of the Danube deep-sea fan. • The multiple BSRs are not caused by overpressure compartments. • The multiple BSRs reflect stages of stable sealevel lowstands during glacial times. • Gas underneath the previous GHSZ does not start to migrate for thousands of years. Abstract High-resolution 2D seismic data reveal the character and distribution of up to four stacked bottom simulating reflectors (BSR) within the channel-levee systems of the Danube deep-sea fan. The theoretical base of the gas hydrate stability zone (GHSZ) calculated from regional geothermal gradients and salinity data is in agreement with the shallowest BSR. For the deeper BSRs, BSR formation due to overpressure compartments can be excluded because the necessary gas column would exceed the vertical distance between two overlying BSRs. We show instead that the deeper BSRs are likely paleo BSRs caused by a change in pressure and temperature conditions during different limnic phases of the Black Sea. This is supported by the observation that the BSRs correspond to paleo seafloor horizons located in a layer between a buried channel-levee system and the levee deposits of the Danube channel. The good match of the observed BSRs and the BSRs predicted from deposition of these sediment layers indicates that the multiple BSRs reflect stages of stable sealevel lowstands possibly during glacial times. The observation of sharp BSRs several 10,000 of years but possibly up to 300,000 yr after they have left the GHSZ demonstrates that either hydrate dissociation does not take place within this time frame or that only small amounts of gas are released that can be transported by diffusion. The gas underneath the previous GHSZ does not start to migrate for several thousands of years.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-11
    Description: Highlights • High abundance of active anaerobic methanotrophs in sediments of the blowout crater suggests adaptation to methane seepage within at most two decades. • Fast exchange processes in permeable surface sediments prevent sulfate depletion and probably methane-derived carbonate precipitation. • Methane seepage impacts isotopic and assemblage composition of benthic foraminifera. Abstract Methane emissions from marine sediments are partly controlled by microbial anaerobic oxidation of methane (AOM). AOM provides a long-term sink for carbon through precipitation of methane-derived authigenic carbonates (MDAC). Estimates on the adaptation time of this benthic methane filter as well as on the establishment of related processes and communities after an onset of methane seepage are rare. In the North Sea, considerable amounts of methane have been released since 20 years from a man-made gas blowout offering an ideal natural laboratory to study the effects of methane seepage on initially “pristine” sediment. Sediment cores were taken from the blowout crater and a reference site (50 m distance) in 2011 and 2012, respectively, to investigate porewater chemistry, the AOM community and activity, the presence of authigenic carbonates, and benthic foraminiferal assemblages. Potential AOM activity (up to 3060 nmol cm−3 sediment d−1 or 375 mmol m−2 d−1) was detected only in the blowout crater up to the maximum sampling depth of 18 cm. CARD-FISH analyzes suggest that monospecific ANME-2 aggregates were the only type of AOM organisms present, showing densities (up to 2.2*107 aggregates cm−3) similar to established methane seeps. No evidence for recent MDAC formation was found using stable isotope analyzes (δ13C and δ18O). In contrast, the carbon isotopic signature of methane was recorded by the epibenthic foraminifer Cibicides lobatulus (δ13C −0.66‰). Surprisingly, the foraminiferal assemblage in the blowout crater was dominated by Cibicides and other species commonly found in the Norwegian Channel and fjords, indicating that these organisms have responded sensitively to the specific environmental conditions at the blowout. The high activity and abundance of AOM organisms only at the blowout site suggests adaptation to a strong increase in methane flux in the order of at most two decades. High gas discharge dynamics in permeable surface sediments facilitate fast sulfate replenishing and stimulation of AOM. The accompanied prevention of total alkalinity build-up in the porewater thereby appears to inhibit the formation of substantial methane-derived authigenic carbonate at least within the given time window.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-09-23
    Description: Highlights • Polypropylene and biodegradable plastic bags were incubated in marine sediments. • Bacterial colonization was highest on biodegradable plastic bags. • None of the two bag types showed signs of degradation after 98 days. • Marine sediments probably represent a long-term sink for both types of litter. Abstract To date, the longevity of plastic litter at the sea floor is poorly constrained. The present study compares colonization and biodegradation of plastic bags by aerobic and anaerobic benthic microbes in temperate fine-grained organic-rich marine sediments. Samples of polyethylene and biodegradable plastic carrier bags were incubated in natural oxic and anoxic sediments from Eckernförde Bay (Western Baltic Sea) for 98 days. Analyses included (1) microbial colonization rates on the bags, (2) examination of the surface structure, wettability, and chemistry, and (3) mass loss of the samples during incubation. On average, biodegradable plastic bags were colonized five times higher by aerobic and eight times higher by anaerobic microbes than polyethylene bags. Both types of bags showed no sign of biodegradation during this study. Therefore, marine sediment in temperate coastal zones may represent a long-term sink for plastic litter and also supposedly compostable material.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-09-24
    Description: Large quantities of methane are stored in hydrates and permafrost within shallow marine sediments in the Arctic Ocean. These reservoirs are highly sensitive to climate warming, but the fate of methane released from sediments is uncertain. Here, we review the principal physical and biogeochemical processes that regulate methane fluxes across the seabed, the fate of this methane in the water column, and potential for its release to the atmosphere. We find that, at present, fluxes of dissolved methane are significantly moderated by anaerobic and aerobic oxidation of methane. If methane fluxes increase then a greater proportion of methane will be transported by advection or in the gas phase, which reduces the efficiency of the methanotrophic sink. Higher freshwater discharge to Arctic shelf seas may increase stratification and inhibit transfer of methane gas to surface waters, although there is some evidence that increased stratification may lead to warming of sub-pycnocline waters, increasing the potential for hydrate dissociation. Loss of sea-ice is likely to increase wind speeds and seaair exchange of methane will consequently increase. Studies of the distribution and cycling of methane beneath and within sea ice are limited, but it seems likely that the sea-air methane flux is higher during melting in seasonally ice-covered regions. Our review reveals that increased observations around especially the anaerobic and aerobic oxidation of methane, bubble transport, and the effects of ice cover, are required to fully understand the linkages and feedback pathways between climate warming and release of methane from marine sediments.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-09-23
    Description: Highlights • PetroMod is the 1st basin modelling software including methane hydrate simulation. • The Gas hydrate module includes physical, thermodynamic, and kinetic properties. • PetroMod simulates the evolution over time of the GHSZ. • PetroMod includes a kinetic for the organic matter degradation at low temperature. Abstract Within the German gas hydrate initiative SUGAR, a new 2-D/3-D module simulating the biogenic generation of methane from organic matter and the formation of gas hydrates has been developed and included in the petroleum systems modelling software package PetroMod®. Typically, PetroMod® simulates the thermogenic generation of multiple hydrocarbon components (oil and gas), their migration through geological strata, finally predicting oil and gas accumulations in suitable reservoir formations. We have extended PetroMod® to simulate gas hydrate accumulations in marine and permafrost environments by the implementation of algorithms describing (1) the physical, thermodynamic, and kinetic properties of gas hydrates; and (2) a kinetic continuum model for the microbially mediated, low temperature degradation of particulate organic carbon in sediments. Additionally, the temporal and spatial resolutions of PetroMod® were increased in order to simulate processes on time scales of hundreds of years and within decimetres of spatial extension. In order to validate the abilities of the new hydrate module, we present here results of a theoretical layer-cake model. The simulation runs predict the spatial distribution and evolution in time of the gas hydrate stability field, the generation and migration of thermogenic and biogenic methane gas, and its accumulation as gas hydrates.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-12-19
    Description: As a result of extensive hydrocarbon exploration, the North Sea hosts several thousand abandoned wells; many believed to be leaking methane. However, how much of this greenhouse gas is emitted into the water column and ultimately reaches the atmosphere is not known. Here, we investigate three abandoned wells at 81-93m water depth in the Norwegian sector of the North Sea, all of which show gas seepage into the bottom water. The isotopic signature of the emanating gas points towards a biogenic origin and hence to gas pockets in the sedimentary overburden above the gas reservoirs that the wells were drilled into. Video-analysis of the seeping gas bubbles and direct gas flow measurements resolved initial bubble sizes ranging between 3.2 and 7.4mm in diameter with a total seabed gas flow between 1 and 19 tons of CH4 per year per well. Estimated total annual seabed emissions from all three wells of ~24 tons are similar to the natural seepage rates at Tommeliten, suggesting that leaky abandoned wells represent a significant source of methane into North Sea bottom waters. However, the bubble-driven direct methane transport into the atmosphere was found to be negligible (〈2%) due to the small bubble sizes and the water depth at which they are released.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...