GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (23)
Document type
Keywords
Years
Year
  • 1
    Publication Date: 2024-02-07
    Description: Marine nitrogen (N2) fixation supports significant primary productivity in the global ocean. However, in one of the most productive regions of the world ocean, the northern Humboldt Upwelling System (HUS), the magnitude and spatial distribution of this process remains poorly characterized. This study presents a spatially resolved dataset of N2 fixation rates across six coastal transects of the northern HUS off Peru (8°S – 16°S) during austral summer. N2 fixation rates were detected throughout the waters column including within the OMZ between 12°S and 16°S. N2 fixation rates were highest where the subsurface Oxygen Minimum Zone (OMZ, O2 〈20 µmol L-1) was most intense and estimated nitrogen (N) loss was highest. There, rates were measured throughout the water column. Hence the vertical and spatial distribution of rates indicates colocation of N2 fixation with N loss in the coastal productive waters of the northern HUS. Despite high phosphate and total dissolvable iron (TdFe) concentrations throughout the study area, N2 fixation was still generally low (1.19 ± 3.81 nmol L-1 d-1) and its distribution could not be directly explained by these two factors. Our results suggest that the distribution was likely influenced by a complex interplay of environmental factors including phytoplankton biomass and organic matter availability, and potentially iron, or other trace metal (co)-limitation of both N2 fixation and primary production. In general, our results support previous conclusions that N2 fixation in the northern HUS plays a minor role as a source of new N and to replenish the regional N loss. Key Points: A north-to-south pattern in N2 fixation rates was observed implying increased N turnover between 12°S and 16°S where N loss was pronounced Highest N2 fixation rates were measured in coastal productive waters above and within the OMZ, showing no clear relationship with Fe or P The magnitude of N2 fixation was low compared to predictions, estimated to account for ∼0.3% of primary production and 〈2% of local N loss
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: To keep global warming below 1.5 °C, technologies that remove carbon from the atmosphere will be needed. Ocean artificial upwelling of nutrient-rich water stimulates primary productivity and could enhance the biological carbon pump for natural CO2 removal. Its potential may depend on the Si availability in the upwelled water, which regulates the abundance of diatoms that are key carbon exporters. In a mesocosm experiment, we tested the effect of nutrient composition (Si relative to N) in artificially upwelled waters on export quantity and quality in a subtropical oligotrophic environment. Upwelling led to a doubling of exported particulate matter and increased C:N ratios to well beyond Redfield (9.5 to 11.1). High Si availability stimulated this carbon over-consumption further, resulting in a temporary ~5-fold increase in POC export and ~30% increase in C:N ratios compared to Si-scarce upwelling. Whilst the biogenic Si ballast of the export flux increased more than 3.5-fold over the Si:N gradient, these heavier particles did not sink faster. On the contrary, sinking velocity decreased considerably under high Si:N, most likely due to reduced particle size. Respiration rates remained similar across all treatments indicating that biogenic Si did not protect particles against microbial degradation. Si availability thus influenced key processes of the biological carbon pump in counteracting ways by increasing the export magnitude and associated C:N ratios but decreasing the efficiency of carbon transfer to depth. These opposing effects need to be considered when evaluating the potential of artificial upwelling as negative emission technology.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: The latest IPCC assessment report highlights once more the need for negative emissions via carbon dioxide removal (CDR) measures to reach ambitious mitigation goals. In particular ecosystem-based CDR measures are currently the focus of national net-zero strategies and novel carbon crediting efforts. Blue carbon dioxide removal (blueCDR) options are anthropogenic activities that aim to enhance such ecosystem-based carbon sinks in the marine environment. The protection and conservation of existing marine ecosystems that naturally sequester carbon, does not qualify as CDR. Using blueCDR as an example, we highlight key challenges concerning the monitoring and evaluation of marine carbon fluxes for carbon crediting. Challenges specific to ecosystem-based CDR measures are i) the definition of baseline natural carbon fluxes, which is necessary for ii) clear anthropogenic CDR signal attribution, as well as iii) accounting for possible natural or anthropogenic disturbances of the carbon stock and hence an assessment for the durability of the carbon storage. In addition, the marine environment poses further monitoring and evaluation challenges due to i) temporal and spatial decoupling of the carbon capturing and sequestration processes, combined with ii) signal dilution due to high ecosystem connectivity, and iii) large pre-existing carbon stocks which makes any human-made increase in carbon stocks even harder to quantify. To increase the scientific rigour and ensure additionality behind issued carbon credits, we support the current trend of focusing monitoring efforts on carbon sequestration rather than on capturing processes, and on establishing a baseline for natural carbon sequestration in diverse marine ecosystems. Finally, we believe that making carbon credits subject to dynamic adjustments over time, will increase their credibility.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: The Arctic is warming 2–3 times faster than the global average, leading to a decrease in Arctic sea ice extent, thickness, and associated changes in sea ice structure. These changes impact sea ice habitat properties and the ice-associated ecosystems. Sea-ice algal blooms provide various algal-derived carbon sources for the bacterial and archaeal communities within the sea ice. Here, we detail the transition of these communities from winter through spring to early summer during the Norwegian young sea ICE (N-ICE2015) expedition. The winter community was dominated by the archaeon Candidatus Nitrosopumilus and bacteria belonging to the Gammaproteobacteria (Colwellia, Kangiellaceae, and Nitrinocolaceae), indicating that nitrogen-based metabolisms, particularly ammonia oxidation to nitrite by Cand. Nitrosopumilus was prevalent. At the onset of the vernal sea-ice algae bloom, the community shifted to the dominance of Gammaproteobacteria (Kangiellaceae, Nitrinocolaceae) and Bacteroidia (Polaribacter), while Cand. Nitrosopumilus almost disappeared. The bioinformatically predicted carbohydrate-active enzymes increased during spring and summer, indicating that sea-ice algae-derived carbon sources are a strong driver of bacterial and archaeal community succession in Arctic sea ice during the change of seasons. This implies a succession from a nitrogen metabolism-based winter community to an algal-derived carbon metabolism-based spring/ summer community.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-07
    Description: Artificial upwelling brings nutrient-rich deep water to the sun-lit surface to boost fisheries or carbon sequestration. Deep water sources under consideration range widely in inorganic silicon (Si) relative to nitrogen (N). Yet, little is known about how such differences in nutrient composition may influence the effectiveness of the fertilization. Si is essential primarily for diatoms that may increase food web and export efficiency via their large size and ballasting mineral shells, respectively. With a month-long mesocosm study in the subtropical North Atlantic, we tested the biological response to artificial upwelling with varying Si:N ratios (0.07-1.33). Community biomass increased 10-fold across all mesocosms, indicating that basic bloom dynamics were upheld despite the wide range in nutrient composition. Key properties of these blooms, however, were influenced by Si. Photosynthetic capacity and nutrient-use efficiency doubled from Si-poor to Si-rich upwelling, leading to C:N ratios as high as 17, well beyond Redfield. Si-rich upwelling also resulted in 6-fold higher diatom abundance and mineralized Si and a corresponding shift from smaller towards larger phytoplankton. The pronounced change in both plankton quantity (biomass) and quality (C:N ratio, size and mineral ballast) for trophic transfer and export underlines the pivotal role of Si in shaping the response of oligotrophic regions to upwelled nutrients. Our findings indicate a benefit of active Si management during artificial upwelling with the potential to optimize fisheries production and CO2 removal.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-07
    Description: Artificial upwelling has been proposed as a means of enhancing oceanic CO2 sequestration and/or raising fishery yields through an increase in primary production in unproductive parts of the ocean. However, evidence of its efficacy, applicability and side effects is scarce. Here we present part of the results of a 37-day mesocosm study conducted in oligotrophic waters off the coast of Gran Canaria. The goal was to assess in situ the effects of artificial upwelling on the pelagic community. Upwelling was simulated via two modes: i) a singular deep-water pulse and ii) a recurring supply every 4 days; each mode at four different intensities defined by the total amount of nitrate added: approx. 1.5, 3, 5.7, and 11 µmol L-1. In this study we focus on the phytoplankton response through size-fractionated 14C primary production rates (PP), Chlorophyll a and biomass. We observed increases in PP, accumulated PP, Chlorophyll a and biomass that scaled linearly with upwelling intensity. Upwelling primarily benefitted larger phytoplankton size fractions, causing a shift from pico- and nano- to nano- and microphytoplankton. Recurring deep-water addition produced more biomass under higher upwelling intensities than a single pulse addition. It also reached significantly higher accumulated PP per unit of added nutrients and showed a stronger reduction in percentage extracellular release with increasing upwelling intensity. These results demonstrate that oligotrophic phytoplankton communities can effectively adjust to artificial upwelling regardless of upwelling intensity, but differently depending on the upwelling mode. Recurring supply of upwelled waters generated higher efficiencies in primary production and biomass build-up than a single pulse of the same volume and nutrient load.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-03-25
    Description: The Humboldt Upwelling System (HUS) supports high levels of primary production and has the largest single-stock fishery worldwide. The high fish production is suggested to be related to high trophic transfer efficiency in the HUS. Mucous-mesh grazers (pelagic tunicates and gastropods) are mostly of low nutritious value and might reduce trophic transfer efficiency when they are locally abundant. Unfortunately, little is known about the spatial dynamics of mucous-mesh grazers from Peruvian waters, limiting our understanding of their potential ecological role(s). We provide a spatial assessment of mucous-mesh grazer abundance from the Peruvian shelf in austral summer 2018/2019 along six cross-shelf transects spanning from 8.5 to 16° S latitude. The community was dominated by appendicularians and doliolids. Salps occurred in high abundance but infrequently and pelagic gastropods were mostly restricted to the North. At low latitudes, the abundance of mucous-mesh grazers was higher than some key species of crustacean mesozooplankton. Transects in this region had stronger Ekman-transport, higher temperature, lower surface turbidity and a broader oxygenated upper water layer compared to higher-latitude transects. Small-scale lateral intrusions of upwelled water were potentially associated with high abundances of doliolids at specific stations. The high abundance and estimated ingestion rates of mucous-mesh grazers in the northern HUS suggest that a large flux of carbon from lower trophic levels is shunted to tunicates in recently upwelled water masses. The data provide important information on the ecology of mucous mesh grazers and stress the relevance to increase research effort on investigating their functioning in upwelling systems.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-05-29
    Description: Enhancing ocean productivity by artificial upwelling is evaluated as a nature-based solution for food security and climate change mitigation. Fish production is intended through diatom-based plankton food webs as these are assumed to be short and efficient. However, our findings from mesocosm experiments on artificial upwelling in the oligotrophic ocean disagree with this classical food web model. Here, diatoms did not reduce trophic length and instead impaired the transfer of primary production to crustacean grazers and small pelagic fish. The diatom-driven decrease in trophic efficiency was likely mediated by changes in nutritional value for the copepod grazers. Whilst diatoms benefitted the availability of essential fatty acids, they also caused unfavorable elemental compositions via high carbon-to-nitrogen ratios (i.e. low protein content) to which the grazers were unable to adapt. This nutritional imbalance for grazers was most pronounced in systems optimized for CO 2 uptake through carbon-to-nitrogen ratios well beyond Redfield. A simultaneous enhancement of fisheries production and carbon sequestration via artificial upwelling may thus be difficult to achieve given their opposing stoichiometric constraints. Our study suggest that food quality can be more critical than quantity to maximize food web productivity during shorter-term fertilization of the oligotrophic ocean.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-06-03
    Description: Artificial upwelling has been discussed as a nature-based solution to fertilize currently unproductive areas of the ocean to enhance food web productivity and atmospheric CO2 sequestration. The efficacy of this approach may be closely tied to the nutrient stoichiometry of the upwelled water, as Si-rich water upwelling should benefit the growth of diatoms, who are key players for primary production, carbon export and food web efficiency. With a mesocosm experiment in subtropical waters, we assessed the physiological and functional responses of an oligotrophic phytoplankton community to artificial upwelling under varying Si:N ratios (0.07-1.33). Deep water fertilization led to strongly enhanced primary productivity rates and net autotrophy across Si scenarios. At the community level, Si-rich upwelling temporarily increased primary production and consistently enhanced diatom growth, producing up to 10-fold higher abundances compared to Si-deficient upwelling. At the organism level, contrasting effects were observed. On the one hand, silicification and size of diatom cells remained unaffected by Si:N, which is surprising given the direct dependency of these traits on Si. On the other hand, diatom Chlorophyll a density and carbon density were strongly reduced and particulate matter C:N was elevated under Si-rich upwelling. This suggests a reduced nutritional value for higher trophic levels under high Si:N ratios. Despite these strong qualitative changes under high Si, diatom cells appeared healthy and showed high photosynthetic efficiency. Our findings reveal great physiological plasticity and adaptability in phytoplankton under artificial upwelling, with Si-dependent trade-offs between primary producer quantity and quality.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-08-15
    Description: Size fractionated primary productivity rate measurements through 14C radioisotope incorporation rates from a KOSMOS mesocosm experiment carried out in the frame work of the Ocean Artificial Upwelling project. The experiment was performed in the North-East Atlantic Ocean off the coast of Gran Canaria in autumn 2018 and lasted for 39 days. In this study we investigated the effect of different intensities of artificial upwelling combined with two upwelling modes (recurring additions versus one singular addition) on the phytoplankton community. Data shown includes production rates of dissolved organic carbon, particulate organic carbon in 3 size fractions (0.2-2 µm, 2-20 µm, 〉20 µm) and total organic carbon.
    Keywords: 14C incorporation; 14C-POC; artificial upwelling; Calculated; Canarias Sea; carbon sequestration; Day of experiment; Depth, water, experiment, bottom/maximum; Depth, water, experiment, top/minimum; Event label; Field experiment; Food web; KOSMOS_2018; KOSMOS_2018_Mesocosm-A; KOSMOS_2018_Mesocosm-M1; KOSMOS_2018_Mesocosm-M2; KOSMOS_2018_Mesocosm-M3; KOSMOS_2018_Mesocosm-M4; KOSMOS_2018_Mesocosm-M5; KOSMOS_2018_Mesocosm-M6; KOSMOS_2018_Mesocosm-M7; KOSMOS_2018_Mesocosm-M8; KOSMOS_2018_Mesocosm-M9; KOSMOS Gran Canaria; MESO; mesocosm experiment; Mesocosm experiment; Mesocosm label; Ocean Artificial Upwelling; Ocean-artUp; Phytoplankton; primary production; Primary production of carbon, organic, dissolved; Primary production of carbon, organic, dissolved, standard deviation; Primary production of carbon, organic, particulate; Primary production of carbon, organic, total; Sampling date/time, experiment; Treatment; Type of study
    Type: Dataset
    Format: text/tab-separated-values, 3342 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...