GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Publisher
Years
  • 1
    Publication Date: 2024-02-07
    Description: Surface wind is taken as the primary driver of upwelling in the eastern boundary upwelling systems. The fluctuation of momentum flux associated with the variation in wind regulates the nutrient supply to the euphotic surface layer via changing the properties of oceanic mixed layer depth, the coastal and offshore upwelling, and horizontal advection. Here, the spatial and temporal variability of the surface wind field over the last seven decades across the Peruvian upwelling system is investigated. Strong fluctuations in seasonal to decadal timescales are found over the entire upwelling system. A semi-periodic wind fluctuation on an interannual timescale is found, which is closely related to the regional sea surface temperature and can be attributed to the El Niño Southern Oscillation (ENSO). However, the wind anomaly patterns during positive and negative phases of ENSO are not opposite, which suggests an asymmetric response of local wind to ENSO cycles. In addition, a semi-regular fluctuation on the decadal timescale is evident in the wind field, which can be attributed to the Interdecadal Pacific Oscillation (IPO). Our results show that the sea surface temperature over the Humboldt Upwelling System is closely connected to local wind stress and the wind stress curl. The SST wind stress co-variability seems more pronounced in the coastal upwelling cells, in which equatorward winds are very likely accompanied by robust cooling over the coastal zones. Over the past seven decades, wind speed underwent a slightly positive trend. However, the spatial pattern of the trend features considerable heterogeneity with larger values near the coastal upwelling cells.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-03-25
    Description: The Humboldt Upwelling System (HUS) supports high levels of primary production and has the largest single-stock fishery worldwide. The high fish production is suggested to be related to high trophic transfer efficiency in the HUS. Mucous-mesh grazers (pelagic tunicates and gastropods) are mostly of low nutritious value and might reduce trophic transfer efficiency when they are locally abundant. Unfortunately, little is known about the spatial dynamics of mucous-mesh grazers from Peruvian waters, limiting our understanding of their potential ecological role(s). We provide a spatial assessment of mucous-mesh grazer abundance from the Peruvian shelf in austral summer 2018/2019 along six cross-shelf transects spanning from 8.5 to 16° S latitude. The community was dominated by appendicularians and doliolids. Salps occurred in high abundance but infrequently and pelagic gastropods were mostly restricted to the North. At low latitudes, the abundance of mucous-mesh grazers was higher than some key species of crustacean mesozooplankton. Transects in this region had stronger Ekman-transport, higher temperature, lower surface turbidity and a broader oxygenated upper water layer compared to higher-latitude transects. Small-scale lateral intrusions of upwelled water were potentially associated with high abundances of doliolids at specific stations. The high abundance and estimated ingestion rates of mucous-mesh grazers in the northern HUS suggest that a large flux of carbon from lower trophic levels is shunted to tunicates in recently upwelled water masses. The data provide important information on the ecology of mucous mesh grazers and stress the relevance to increase research effort on investigating their functioning in upwelling systems.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...