GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus, Göttingen  (2)
  • Frontiers  (2)
  • 2020-2024  (2)
  • 2010-2014  (2)
  • 1
    Publication Date: 2024-02-07
    Description: A marine sediment record from the central Bering Sea, spanning the last 20 thousand years (ka), was studied to unravel the depositional history with regard to terrigenous sediment supply and biogenic sedimentation. Methodic approaches comprised the inference of accumulation rates of siliciclastic and biogenic components, grain-size analysis, and (clay) mineralogy, as well as paleoclimatic modelling. Changes in the depositional history provides insight into land-ocean linkages of paleoenvironmental changes. During the finale of the Last Glacial Maximum, the depositional environment was characterized by hemipelagic background sedimentation. A marked change in the terrigenous sediment provenance during the late Heinrich 1 Stadial (15.7–14.5 ka), indicated by increases in kaolinite and a high glaciofluvial influx of clay, gives evidence of the deglaciation of the Brooks Range in the hinterland of Alaska. This meltwater pulse also stimulated the postglacial onset of biological productivity. Glacial melt implies regional climate warming during a time of widespread cooling on the northern hemisphere. Our simulation experiment with a coupled climate model suggests atmospheric teleconnections to the North Atlantic, with impacts on the dynamics of the Aleutian Low system that gave rise to warmer winters and an early onset of spring during that time. The late deglacial period between 14.5 and 11.0 ka was characterized by enhanced fluvial runoff and biological productivity in the course of climate amelioration, sea-level rise, seasonal sea-ice retreat, and permafrost thaw in the hinterland. The latter processes temporarily stalled during the Younger Dryas stadial (12.9-11.7 ka) and commenced again during the Preboreal (earliest Holocene), after 11.7 ka. High river runoff might have fertilized the Bering Sea and contributed to enhanced upper ocean stratification. Since 11.0 ka, advanced transgression has shifted the coast line and fluvial influence of the Yukon River away from the study site. The opening of the Bering Strait strengthened contour currents along the continental slope, leaving behind winnowed sand-rich sediments through the early to mid-Holocene, with non-deposition occurring since about 6.0 ka.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Copernicus, Göttingen
    In:  EPIC3EGU General Assembly 2012, Vienna, 2012-04-22-2012-04-27Geophysical Research Abstracts, Vol. 14, EGU2012-4966, Copernicus, Göttingen
    Publication Date: 2019-07-17
    Description: A significant influence of changes in the westerly winds over the Southern Ocean was proposed as a mechanism to explain a large portion of the glacial atmospheric pCO2 drawdown (Toggweiler et al., 2006). However, additional modelling studies with Earth System Models of Intermediate Complexity do not confirm the size and sometimes even the sign of the impact of southern hemispheric winds on the glacial pCO2 as suggested by Toggweiler (Men- viel et al., 2008; Tschumi et al., 2008, d’Orgeville et al., 2010). We here add to this discussion and explore the potential contribution of changes in the latitudinal position of the winds on Southern Ocean physics and the carbon cycle by using a state-of-the-art ocean general circulation model (MITgcm) in a spatial resolution increasing in the Southern Ocean (2◦ longitude; northern hemisphere: 2◦ latitude; southern hemisphere: 2◦cos(α)). We discuss how the change in carbon cycling is related to the upwelling strength and pattern in the Southern Ocean and how they depend on the changing wind fields and/or the sea ice coverage. While the previous studies explored the impact of the westlies starting from present day or pre-industrial back- ground conditions, we here perform simulations from LGM background climate. Ocean surface conditions are for reasons of consistency taken from output of the COSMOS Earth System model for a pre-industrial control and two LGM runs (Zhang et al., in preparation). Additionally, a northwards shift (by 10◦) of the westerly wind belt as proposed by Toggweiler is investigated.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Copernicus, Göttingen
    In:  EPIC3EGU General Assembly 2012, Vienna, 2012-04-22-2012-04-27Geophysical Research Abstracts, Vol. 14, EGU2012-4147, Copernicus, Göttingen
    Publication Date: 2019-07-17
    Description: On a million-year time scale the global carbon cycle and atmospheric CO2 are assumed to be largely determined by the so-called solid Earth processes weathering, sedimentation, and volcanic outgassing. However, it is not clear how much of the observed dynamics in the proxy data constraining the carbon cycle over the Cenozoic might be determined by internal processes of the atmosphere-ocean-biosphere subsystem. Here, we apply for the first time a process-based model of the global carbon cycle in transient simulations over the last 20 Myr to identify the contributions of terrestrial carbon storage, solubility pump and ocean gateways on changes in atmospheric CO2 and marine δ13C. We apply the isotopic carbon cycle box model BICYCLE, which consists of atmosphere, terrestrial biosphere and ocean reservoirs, the latter containing the full marine carbonate system. Our simulation results show that the long-term cooling since the Mid Miocene Climatic Optimum (about 15 Myr BP) leads to an intensification of the solubility pump, and a drop in atmospheric CO2 of up to 100 ppmv. This oceanic carbon uptake is largely counterbalanced by carbon loss from the terrestrial biosphere. The reduction in terrestrial C storage over time including the expansion of C4 grasses during the last 8 Myr might explain half of the long-term decline in deep ocean δ13C and would support high CO2 (400 to 450 ppmv) around 15 Myr BP. The closure of the Tethys and the Central America ocean gateways explains the developing gradient in deep ocean δ13C between the Atlantic and Pacific basin. We furthermore calculate the residuals, which are unexplained by our results and are therefore caused by solid Earth processes. From the residuals ocean alkalinity rising over time is detected as the main reason for declining atmospheric CO2 which led to Earth’s long-term cooling observed since the Mid Miocene Climate Optimum. A combination of two processes — a reduction in volcanic out-gassing of CO2 together with increasing continental weathering rates — might explain the rising alkalinity pattern. The reduced volcanic activity probably caused by shrinking seafloor spreading rates started around 16 Myr BP is connected with a prominent regime shift in the carbon cycle-climate system. The existence of such a regime shift is confirmed if we extend our analysis to deep ocean records of δ18O and δ13C over the whole Cenozoic.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Frontiers
    In:  EPIC3Frontiers in Climate, Frontiers, 6, pp. 1345763-1345763, ISSN: 2624-9553
    Publication Date: 2024-04-22
    Description: While the Arctic's accelerated warming and sea ice decline have been associated with Eurasian cooling, debates persist between those attributing this to sea ice retreat and those to internal variability. Our study examines the association between autumn sea ice variability over the Barents-Kara Seas and extreme cold winters in Europe. Using the observational data and composite analysis, we explore the interannual variability and the potential linkage between sea ice and atmospheric circulation patterns. It reveals a correlation with shifts toward a negative phase of North Atlantic Oscillation and more frequent episodes of the atmospheric blocking over Greenland and the North Atlantic. Furthermore, the negative phase of the North Atlantic Oscillation and enhanced blocking are closely related and mutually reinforcing, shaping the spatial distribution of cold anomalies over much of the European continent. Our results suggest a link between the unusual decrease in Barents-Kara Sea ice during autumn and the occurrence of intense European weather extremes in subsequent winter months, emphasizing the need for delving deeper into this relationship on monthly time scales to enhance our predictive capabilities for midlatitude extreme events.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...