GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Radiocarbon  (1)
  • (8) 20/09 BELEM MARG. ESQUERDA P.1.5M 0-4; 09/05_P99; 09/05 P99 MACAPA SUL MARG. DIREITA; 101_9/5_MACAPA; 101 9/5 MACAPA SUL ESQUERDA; 12/03_MCP; 12/03 MCP NORTEE MARGEM ESQ 0-2 PONTO; 13/05/11_BELEM; 13/05/11BELEM RIO PARA P40 MEIO CANAL 04; 14/09_MCP; 14/09_MCP_MEP; 14/09 MCP MEP SUL MARG. DIREITA PTO 4 CORE 0-4; 14/09 MCP PONTO 6 0-4; 20/09_BELEM; 20/09_BELEM_MARG; 20/09_BLM; 20/09 BELEM PTO 8 MARGEM ESQ. 0-4; 20/09 BLM MD PONTO2 0-4; 25/9/11_OBIDOS; 25/9/11 OBIDOS ME CORE 0-4; 7/5_MACAPA; 7/5_P95; 7/5 MACAPA NORTE P.94 ESQUERDA; 7/5 P95 MACAPA NORTE MEIO; 9/5_MACAPA; 9/5 MACAPA SUL PIOO MEIO; Aluminium/Silicon ratio; Area/locality; Average chain length; Calculated; Carbon, organic, total; Carbon Preference Index; Center for Marine Environmental Sciences; DEPTH, sediment/rock; Element analyser CS, LECO CS-200; Elevation of event; Event label; Latitude of event; Longitude of event; Madeira River; MAO_02c; MAO_02d; MAO_02e; MAO_02f_VGRAB; MAO_03a; MAO_03h; MAO_05d_VGRAB; MAO_08a; MAO_08b; MAO_09b; MAO_11a; MAO_11c; MAO_13b; MAO_13c; MAO_23a; MAO_24a; MAO_25a; MAO_25b; MAO_25d; MAO_25e; MAO_28a; MAO_28d; MAO_3; MAO_32; MAO_4; MAO_73; MAO_77_VGRAB; MAO_90; MARUM; MCP_SUL_P89; MCP SUL P89 ESQ P-2M; MIC; MiniCorer; n-Alkane C29-C31; n-Alkane C29-C32, δ13C; n-Alkane C29-C32, δD; Negro River; Para River; Sample code/label; Season; Solimoes River; van Veen Grab; VGRAB; XA_25; XA_30; XA_31; XA_33; XA_34; XA_35; XA_36; XA_38; XA_76; Xingu River
  • Aminopentol, per unit mass total organic carbon; Aminotetrol, per unit mass total organic carbon; Aminotriol, per unit mass total organic carbon; Carbon, organic, total; Center for Marine Environmental Sciences; Congo Fan; Depth, bottom/max; DEPTH, sediment/rock; Depth, top/min; GeoB6518-1; Gravity corer (Kiel type); M47/3; MARUM; Meteor (1986); SL
  • 2020-2023  (1)
Document type
Keywords
  • Radiocarbon  (1)
  • (8) 20/09 BELEM MARG. ESQUERDA P.1.5M 0-4; 09/05_P99; 09/05 P99 MACAPA SUL MARG. DIREITA; 101_9/5_MACAPA; 101 9/5 MACAPA SUL ESQUERDA; 12/03_MCP; 12/03 MCP NORTEE MARGEM ESQ 0-2 PONTO; 13/05/11_BELEM; 13/05/11BELEM RIO PARA P40 MEIO CANAL 04; 14/09_MCP; 14/09_MCP_MEP; 14/09 MCP MEP SUL MARG. DIREITA PTO 4 CORE 0-4; 14/09 MCP PONTO 6 0-4; 20/09_BELEM; 20/09_BELEM_MARG; 20/09_BLM; 20/09 BELEM PTO 8 MARGEM ESQ. 0-4; 20/09 BLM MD PONTO2 0-4; 25/9/11_OBIDOS; 25/9/11 OBIDOS ME CORE 0-4; 7/5_MACAPA; 7/5_P95; 7/5 MACAPA NORTE P.94 ESQUERDA; 7/5 P95 MACAPA NORTE MEIO; 9/5_MACAPA; 9/5 MACAPA SUL PIOO MEIO; Aluminium/Silicon ratio; Area/locality; Average chain length; Calculated; Carbon, organic, total; Carbon Preference Index; Center for Marine Environmental Sciences; DEPTH, sediment/rock; Element analyser CS, LECO CS-200; Elevation of event; Event label; Latitude of event; Longitude of event; Madeira River; MAO_02c; MAO_02d; MAO_02e; MAO_02f_VGRAB; MAO_03a; MAO_03h; MAO_05d_VGRAB; MAO_08a; MAO_08b; MAO_09b; MAO_11a; MAO_11c; MAO_13b; MAO_13c; MAO_23a; MAO_24a; MAO_25a; MAO_25b; MAO_25d; MAO_25e; MAO_28a; MAO_28d; MAO_3; MAO_32; MAO_4; MAO_73; MAO_77_VGRAB; MAO_90; MARUM; MCP_SUL_P89; MCP SUL P89 ESQ P-2M; MIC; MiniCorer; n-Alkane C29-C31; n-Alkane C29-C32, δ13C; n-Alkane C29-C32, δD; Negro River; Para River; Sample code/label; Season; Solimoes River; van Veen Grab; VGRAB; XA_25; XA_30; XA_31; XA_33; XA_34; XA_35; XA_36; XA_38; XA_76; Xingu River
  • Aminopentol, per unit mass total organic carbon; Aminotetrol, per unit mass total organic carbon; Aminotriol, per unit mass total organic carbon; Carbon, organic, total; Center for Marine Environmental Sciences; Congo Fan; Depth, bottom/max; DEPTH, sediment/rock; Depth, top/min; GeoB6518-1; Gravity corer (Kiel type); M47/3; MARUM; Meteor (1986); SL
  • Carbon cycle  (1)
  • Carbon turnover times  (1)
  • +
Years
Year
  • 1
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Eglinton, T. I., Galy, V. V., Hemingway, J. D., Feng, X., Bao, H., Blattmann, T. M., Dickens, A. F., Gies, H., Giosan, L., Haghipour, N., Hou, P., Lupker, M., McIntyre, C. P., Montluçon, D. B., Peucker-Ehrenbrink, B., Ponton, C., Schefuß, E., Schwab, M. S., Voss, B. M., Wacker, L., Wu, Y., & Zhao, M. Climate control on terrestrial biospheric carbon turnover. Proceedings of the National Academy of Sciences of the United States of America, 118(8), (2021): e2011585118, htps://doi.org/ 10.1073/pnas.2011585118.
    Description: Terrestrial vegetation and soils hold three times more carbon than the atmosphere. Much debate concerns how anthropogenic activity will perturb these surface reservoirs, potentially exacerbating ongoing changes to the climate system. Uncertainties specifically persist in extrapolating point-source observations to ecosystem-scale budgets and fluxes, which require consideration of vertical and lateral processes on multiple temporal and spatial scales. To explore controls on organic carbon (OC) turnover at the river basin scale, we present radiocarbon (14C) ages on two groups of molecular tracers of plant-derived carbon—leaf-wax lipids and lignin phenols—from a globally distributed suite of rivers. We find significant negative relationships between the 14C age of these biomarkers and mean annual temperature and precipitation. Moreover, riverine biospheric-carbon ages scale proportionally with basin-wide soil carbon turnover times and soil 14C ages, implicating OC cycling within soils as a primary control on exported biomarker ages and revealing a broad distribution of soil OC reactivities. The ubiquitous occurrence of a long-lived soil OC pool suggests soil OC is globally vulnerable to perturbations by future temperature and precipitation increase. Scaling of riverine biospheric-carbon ages with soil OC turnover shows the former can constrain the sensitivity of carbon dynamics to environmental controls on broad spatial scales. Extracting this information from fluvially dominated sedimentary sequences may inform past variations in soil OC turnover in response to anthropogenic and/or climate perturbations. In turn, monitoring riverine OC composition may help detect future climate-change–induced perturbations of soil OC turnover and stocks.
    Description: This work was supported by grants from the US NSF (OCE-0928582 to T.I.E. and V.V.G.; OCE-0851015 to B.P.-E., T.I.E., and V.V.G.; and EAR-1226818 to B.P.-E.), Swiss National Science Foundation (200021_140850, 200020_163162, and 200020_184865 to T.I.E.), and National Natural Science Foundation of China (41520104009 to M.Z.).
    Keywords: Radiocarbon ; Plant biomarkers ; Carbon turnover times ; Fluvial carbon ; Carbon cycle
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...