GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (3)
  • 2020-2022  (2)
  • 1
    Publication Date: 2019-12-20
    Description: Bioturbation is one of the key mediators of biogeochemical processes in benthic habitats that can have a high contribution to seafloor functioning and benthic pelagic coupling in coastal waters. Previous studies on bioturbation were limited to point locations and extrapolations in single regions, but have not accounted for regional differences under changing environmental conditions, though there are indications that species contributions will differ across regions or with biotic and abiotic context. To capture those differences and assess global patterns and commonalities, multi-regional analyses are imperative. Here for the first time, bioturbation potential (BPc), a functional indicator of benthic community bioturbation, was estimated based on macrofauna data from four regions (i.e. German Baltic Sea, German North Sea, Belgian part of the North Sea and the Eastern English Channel). For each region and sediment type we identified key species contributing to BPc. Comparison within and across regions demonstrated regional differences, and both overlap and mismatch between species that are functionally important and those that are dominant in biomass. Knowledge on the functionally important species is crucial when management objectives include the protection of certain ecosystem functions. Available environmental layers were used as predictors to model the spatial distribution of BPc for each area and to explore the underlying drivers of differences. Random forest models were trained using as response variables either i) BPc initially calculated per station; or ii) BPp – the species-specific contribution to BPc – for key species (with subsequent summation of their predicted full-coverage distributions to BPc). Maps of BPc distribution predicted by random forest were compared with those generated using natural neighbour interpolation. Overall, derived BPc values increased towards the German parts of the North and Baltic Seas. The relevance of BPc for ecosystem processes and functions, however, vary with biotic and abiotic settings. Results revealed a strong association of BPc with species diversity and region, but less with sediment grain size. A large range of BPc occurred when species richness was low. This suggests that the provisioning of high bioturbation activity is possible also under low diversity, where it is vulnerable due to reduced resilience. The executed multi-regional analysis allowed identifying regional differences in performance of macrofauna, suggesting the need for regionspecific conservation and management strategies. https://doi.org/10.1016/j.ecolind.2019.105945 Received 26 July 2019; Received in revised form 12 November 2019; Accepted 14 November 2019 ⁎ Corresponding author. E-mail address: mayya.gogina@io-warnemuende.de (M. Gogina). Ecological Indicators 110 (2020) 105945 1470-160X/ Crown Copyright © 2019 Published by Elsevier Ltd. All rights reserved. T
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-06-22
    Description: The contribution of sediments to nutrient cycling of the coastal North Sea is strongly controlled by the intensity of fluxes across the sediment water interface. Pore‐water advection is one major exchange mechanism that is well described by models, as it is determined by physical parameters. In contrast, biotransport (i.e., bioirrigation, bioturbation) as the other major transport mechanism is much more complex. Observational data reflecting biotransport, from the German Bight for example, is scarce. We sampled the major sediment provinces of the German Bight repeatedly over the years from 2013 to 2019. By employing ex situ whole core incubations, we established the seasonal and spatial variability of macrofauna‐sustained benthic fluxes of oxygen and nutrients. A multivariate, partial least squares analysis identified faunal activity, in specifically bioturbation and bioirrigation, alongside temperature, as the most important drivers of oxygen and nutrient fluxes. Their combined effect explained 63% of the observed variability in oxygen fluxes, and 36–48% of variability in nutrient fluxes. Additional 10% of the observed variability of fluxes were explained by sediment type and the availability of plankton biomass. Based on our extrapolation by sediment provinces, we conclude that pore‐water advection and macrofaunal activity contributed equally to the total benthic oxygen uptake in the German Bight.
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Keywords: 551 ; southern North Sea ; coastal sediments ; macrofauna ; bioturbation ; bioirrigation ; organic matter turnover
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-04-24
    Description: Sediment reworking by benthic infauna, namely bioturbation, is of pivotal importance in expansive soft-sediment environments such as the Wadden Sea. Bioturbating fauna facilitate ecosystem functions such as bentho-pelagic coupling and sediment nutrient remineralization capacities. Yet, these benthic fauna are expected to be profoundly affected by current observed rising sea temperatures. In order to predict future changes in ecosystem functioning in soft-sediment environments like the Wadden Sea, knowledge on the underlying processes such as sediment reworking, is crucial. Here, we tested how temperature affects bioturbation and its associated ecosystem processes, such as benthic nutrient fluxes and sediment oxygen consumption, using luminophore tracers and sediment incubation cores. We used a controlled mesocosm experiment set-up with key Wadden Sea benthos species: the burrowing polychaetes Arenicola marina and Hediste diversicolor, the bivalve Cerastoderma edule, and the tube-building polychaete Lanice conchilega. The highest bioturbation rates were observed from A. marina, reaching up to 375 cm2yr−1; followed by H. diversicolor, with 124 cm2yr−1 being the peak bioturbation rate for the ragworm. Additionally, the sediment reworking activity of A. marina facilitated nearly double the amount of silicate efflux compared to any other species. Arenicola marina and H. diversicolor accordingly facilitated stronger nutrient effluxes under a warmer temperature than L. conchilega and C. edule. The oxygen uptake of A. marina and H. diversicolor within the sediment incubation cores was correspondingly enhanced with a higher temperature. Thus, increases in sea temperatures may initially be beneficial to ecosystem functioning in the Wadden Sea as faunal bioturbation is definitely expedited, leading to a tighter coupling between the sediment and overlying water column. The enhanced bioturbation activity, oxygen consumption, and facilitated nutrient effluxes from these invertebrates themselves, will aid in the ongoing high levels of primary productivity and organic matter production.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-01-31
    Description: The authors regret that the specified units of bioirrigation activity (Ic) and the indices (i.e. IPc,AFDM, IPc,WM, BPc,WM, BPc,AFDM) were incorrect in the original publication. Bioirrigation activity was presented in l/m25 min rather than in l/m2h and the indices were calculated per experimental core rather than per m2. Nevertheless, this does not affect the results and also the conclusions remain unchanged. AICc values for the best models of IPc,AFDM, IPc,WM, BPc,WM, BPc,AFDM have not changed in relation to each other, although they differ in value. The corrected version of Appendix B includes the corrected statistical details (i.e. AICc values). The corrected version of the Fig. 1 is provided below. The authors would like to apologize for any inconvenience caused.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Elsevier BV
    In:  EPIC3Journal of Experimental Marine Biology and Ecology, Elsevier BV, 559, 8 p., ISSN: 0022-0981
    Publication Date: 2024-04-11
    Description: Bioturbation is a central transport process for ecosystem functioning, especially in large soft sediment habitats like the Wadden Sea. The amphipod C. volutator is a dominant bioturbator in the Wadden Sea, due to its great abundance and almost continuous particle movement. Expedition or loss of its bioturbation activity could thus hold ramifications for ecosystem functioning within sediments, like carbon sequestration and nutrient recycling. Here we test the effect that temperature and organic enrichment have on the bioturbation of C. volutator; two prevalent abiotic factors in the Corophiid's habitat that have fluctuated over recent decades, and are expected to change in the future. In-situ experiments were conducted under 8 and 15 ◦C, with varying levels (0 g, 0.1 g, and 0.2 g) of powdered Ulva compressa enriching cores containing C. volutator. We found a significant interaction effect of temperature and organic enrichment on the bioturbation rate of the amphipod, with bioturbation only increasing with added organic enrichment at 15 ◦C. Further, a threshold within our experiments was also reached under 15 ◦C, where the amphipod ceased to expedite bioturbation under higher organic enrichment. This upper limit on this dominant bioturbation imposed with organic enrichment emphasizes the sensitivity of C. volutator. Our findings reveal bioturbation can be limited by temperature in colder months, and opposingly, limited by organic enrichment under warmer conditions. In future Wadden Sea scenarios where temperature is predicted to be warmer and winters milder, enhanced bioturbation activity by C. volutator could prove crucial in continued ecosystem functions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...