GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Hochschulschrift
    Type of Medium: Online Resource
    Pages: Online-Ressource (63 Blatt = 2,5 MB)
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-14
    Description: Benthic fluxes of dissolved nutrients and oxygen measured in the southern North Sea using ex situ incubation chambers indicate a prominent annual cycle characterized by low level from mid-autumn (Oct) to early spring (Mar) and enhanced values from mid-spring (Apr) to early autumn (Sep) with peak in late summer (late Aug/early Sep). The same cycle is also shown in the budget of total organic carbon (TOC) and macrobenthic biomass in surface sediments. The significant positive correlations between the benthic nutrient fluxes, oxygen, sedimentary TOC and macrobenthos suggest that their variation might respond to a common source, i.e. the primary production. However, the linkages between these quantities and pelagic primary production, which exhibits a dominant bloom in early spring (Mar/Apr) and a secondary bloom in early summer (Jun/Jul) in the study area, is not straightforward. We present a numerical study to unravel the complex linkages. A 3-D coupled hydrodynamic-biogeochemical model (ECOSMO) was used to provide benthic boundary conditions for a 1-D biogeochemical model in the sediment (TOCMAIM) that mechanistically resolves the interaction between macrobenthos and organic matter through bioturbation. Simulation results based on a satisfactory hindcast from 1948 to 2015 reveal that although the spring algal bloom normally starts in late winter (Feb) and peaks in early spring (Mar/Apr), deposition of labile OC to seafloor is limited in this period due to energetic hydrodynamic conditions. Sedimentation and accumulation of labile OC (originated from fresh planktonic detritus) in seafloor surface sediments are facilitated in summer when wind-waves become weak enough. This drives the blooming of macrobenthos, with peak of biomass in late summer (Aug). Bioturbation intensity, which is dependent upon macrobenthic biomass, community structure as well as local food resource, peaks also in later summer. Enhanced bioturbation and benthic metabolism result in an increased oxygen flux into sediments, promoting remineralization of OC and release of nutrients. The following period (late Sep/Oct) is characterized by low level of pelagic primary production in combination with enhanced wind-waves, which not only reduce the input of labile OC into sediments substantially but also remobilize surface material (sediments and OC) on a major part of the shallow coastal seafloor. Depletion of labile OC in the uppermost centimeters of sediments by a combined effect of erosion, macrobenthic uptake and downward mixing (through bioturbation) accounts for the rapid decline of benthic nutrient fluxes in Oct, which remain low through the stormy winter until the next spring.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-06-22
    Description: The contribution of sediments to nutrient cycling of the coastal North Sea is strongly controlled by the intensity of fluxes across the sediment water interface. Pore‐water advection is one major exchange mechanism that is well described by models, as it is determined by physical parameters. In contrast, biotransport (i.e., bioirrigation, bioturbation) as the other major transport mechanism is much more complex. Observational data reflecting biotransport, from the German Bight for example, is scarce. We sampled the major sediment provinces of the German Bight repeatedly over the years from 2013 to 2019. By employing ex situ whole core incubations, we established the seasonal and spatial variability of macrofauna‐sustained benthic fluxes of oxygen and nutrients. A multivariate, partial least squares analysis identified faunal activity, in specifically bioturbation and bioirrigation, alongside temperature, as the most important drivers of oxygen and nutrient fluxes. Their combined effect explained 63% of the observed variability in oxygen fluxes, and 36–48% of variability in nutrient fluxes. Additional 10% of the observed variability of fluxes were explained by sediment type and the availability of plankton biomass. Based on our extrapolation by sediment provinces, we conclude that pore‐water advection and macrofaunal activity contributed equally to the total benthic oxygen uptake in the German Bight.
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Keywords: 551 ; southern North Sea ; coastal sediments ; macrofauna ; bioturbation ; bioirrigation ; organic matter turnover
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-09-21
    Description: The contribution of sediments to nutrient cycling of the coastal North Sea is strongly controlled by the intensity of fluxes across the sediment water interface. Pore-water advection is one major exchange mechanism that is well described by models, as it is determined by physical parameters. In contrast, biotransport (i.e., bioirrigation, bioturbation) as the other major transport mechanism is much more complex. Observational data reflecting biotransport, from the German Bight for example, is scarce. We sampled the major sediment provinces of the German Bight repeatedly over the years from 2013 to 2019. By employing ex situ whole core incubations, we established the seasonal and spatial variability of macrofauna-sustained benthic fluxes of oxygen and nutrients. A multivariate, partial least squares analysis identified faunal activity, in specifically bioturbation and bioirrigation, alongside temperature, as the most important drivers of oxygen and nutrient fluxes. Their combined effect explained 63% of the observed variability in oxygen fluxes, and 36–48% of variability in nutrient fluxes. Additional 10% of the observed variability of fluxes were explained by sediment type and the availability of plankton biomass. Based on our extrapolation by sediment provinces, we conclude that pore-water advection and macrofaunal activity contributed equally to the total benthic oxygen uptake in the German Bight.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  (Master thesis), Lund University, Faculty of Science, Department Biology, Lund, 63 pp
    Publication Date: 2014-01-10
    Type: Thesis , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...