GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • OceanRep  (74)
  • AGU (American Geophysical Union)  (58)
  • Oxford Univ. Press  (16)
  • 1
    Publication Date: 2024-02-07
    Description: Food webs are central entities mediating processes and external pressures in marine ecosystems. They are essential to understand and predict ecosystem dynamics and provision of ecosystem services. Paradoxically, utilization of food web knowledge in marine environmental conservation and resource management is limited. To better understand the use of knowledge and barriers to incorporation in management, we assess its application related to the management of eutrophication, chemical contamination, fish stocks, and non-indigenous species. We focus on the Baltic, a severely impacted, but also intensely studied and actively managed semi-enclosed sea. Our assessment shows food web processes playing a central role in all four areas, but application varies strongly, from formalized integration in management decisions, to support in selecting indicators and setting threshold values, to informal knowledge explaining ecosystem dynamics and management performance. Barriers for integration are complexity of involved ecological processes and that management frameworks are not designed to handle such information. We provide a categorization of the multi-faceted uses of food web knowledge and benefits of future incorporation in management, especially moving towards ecosystem-based approaches as guiding principle in present marine policies and directives. We close with perspectives on research needs to support this move considering global and regional change.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-02-08
    Description: Overfishing and rapid environmental shifts pose severe challenges to the resilience and viability of marine fish populations. To develop and implement measures that enhance species’ adaptive potential to cope with those pressures while, at the same time, ensuring sustainable exploitation rates is part of the central goal of fisheries management. Here, we argue that a combination of biophysical modelling and population genomic assessments offer ideal management tools to define stocks, their physical connectivity and ultimately, their short-term adaptive potential. To date, biophysical modelling has often been confined to fisheries ecology whereas evolutionary hypotheses remain rarely considered. When identified, connectivity patterns are seldom explored to understand the evolution and distribution of adaptive genetic variation, a proxy for species’ evolutionary potential. Here, we describe a framework that expands on the conventional seascape genetics approach by using biophysical modelling and population genomics. The goals are to identify connectivity patterns and selective pressures, as well as putative adaptive variants directly responding to the selective pressures and, ultimately, link both to define testable hypotheses over species response to shifting ecological conditions and overexploitation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-06-25
    Description: Annual catches of Todarodes pacificus in Japan have gradually increased since the late 1980s. Paralarval abundances have also been higher since the late 1980s compared to the late 1970s and mid-1980s. Here is proposed a possible scenario for the recent stock increase based on changing environmental conditions. Based on trends in annual variations in stock and in larval abundances, catches are reviewed and potential spawning areas inferred, assuming that egg masses and hatchlings occur over the continental shelf at temperatures between 15 and 23°C. Changes are then inferred in the spawning areas during 1984–1995, based on GIS data. Since the late 1980s, the autumn and winter spawning areas in the Tsushima Strait and near the Goto Islands appear to have overlapped, and winter spawning sites seem to have expanded over the continental shelf and slope in the East China Sea.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-02-08
    Description: Forecasting and early warning systems are important investments to protect lives, properties and livelihood. While early warning systems are frequently used to predict the magnitude, location and timing of potentially damaging events, these systems rarely provide impact estimates, such as the expected amount and distribution of physical damage, human consequences, disruption of services or financial loss. Complementing early warning systems with impact forecasts has a two‐fold advantage: it would provide decision makers with richer information to take informed decisions about emergency measures, and focus the attention of different disciplines on a common target. This would allow capitalizing on synergies between different disciplines and boosting the development of multi‐hazard early warning systems. This review discusses the state‐of‐the‐art in impact forecasting for a wide range of natural hazards. We outline the added value of impact‐based warnings compared to hazard forecasting for the emergency phase, indicate challenges and pitfalls, and synthesize the review results across hazard types most relevant for Europe. Plain language summary Forecasting and early warning systems are important investments to protect lives, properties and livelihood. While such systems are frequently used to predict the magnitude, location and timing of potentially damaging events, they rarely provide impact estimates, such as the expected physical damage, human consequences, disruption of services or financial loss. Extending hazard forecast systems to include impact estimates promises many benefits for the emergency phase, for instance, for organising evacuations. We review and compare the state‐of‐the‐art of impact forcasting across a wide range of natural hazards, and outline opportunities and key challenges for research and development of impact forecasting.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-07
    Description: Accurately predicting future ocean acidification (OA) conditions is crucial for advancing OA research at regional and global scales, and guiding society's mitigation and adaptation efforts. This study presents a new model-data fusion product covering 10 global surface OA indicators based on 14 Earth System Models (ESMs) from the Coupled Model Intercomparison Project Phase 6 (CMIP6), along with three recent observational ocean carbon data products. The indicators include fugacity of carbon dioxide, pH on total scale, total hydrogen ion content, free hydrogen ion content, carbonate ion content, aragonite saturation state, calcite saturation state, Revelle Factor, total dissolved inorganic carbon content, and total alkalinity content. The evolution of these OA indicators is presented on a global surface ocean 1° × 1° grid as decadal averages every 10 years from preindustrial conditions (1750), through historical conditions (1850–2010), and to five future Shared Socioeconomic Pathways (2020–2100): SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5. These OA trajectories represent an improvement over previous OA data products with respect to data quantity, spatial and temporal coverage, diversity of the underlying data and model simulations, and the provided SSPs. The generated data product offers a state-of-the-art research and management tool for the 21st century under the combined stressors of global climate change and ocean acidification. The gridded data product is available in NetCDF at the National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Information: https://www.ncei.noaa.gov/data/oceans/ncei/ocads/metadata/0259391.html, and global maps of these indicators are available in jpeg at: https://www.ncei.noaa.gov/access/ocean-carbon-acidification-data-system/synthesis/surface-oa-indicators.html. Key Points: - This study presents the evolution of 10 ocean acidification (OA) indicators in the global surface ocean from 1750 to 2100 - By leveraging 14 Earth System Models (ESMs) and the latest observational data, it represents a significant advancement in OA projections - This inter-model comparison effort showcases the overall agreements among different ESMs in projecting surface ocean carbon variables
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-04-08
    Description: The Observing Air–Sea Interactions Strategy (OASIS) is a new United Nations Decade of Ocean Science for Sustainable Development programme working to develop a practical, integrated approach for observing air–sea interactions globally for improved Earth system (including ecosystem) forecasts, CO2 uptake assessments called for by the Paris Agreement, and invaluable surface ocean information for decision makers. Our “Theory of Change” relies upon leveraged multi-disciplinary activities, partnerships, and capacity strengthening. Recommendations from 〉40 OceanObs’19 community papers and a series of workshops have been consolidated into three interlinked Grand Ideas for creating #1: a globally distributed network of mobile air–sea observing platforms built around an expanded array of long-term time-series stations; #2: a satellite network, with high spatial and temporal resolution, optimized for measuring air–sea fluxes; and #3: improved representation of air–sea coupling in a hierarchy of Earth system models. OASIS activities are organized across five Theme Teams: (1) Observing Network Design & Model Improvement; (2) Partnership & Capacity Strengthening; (3) UN Decade OASIS Actions; (4) Best Practices & Interoperability Experiments; and (5) Findable–Accessible–Interoperable–Reusable (FAIR) models, data, and OASIS products. Stakeholders, including researchers, are actively recruited to participate in Theme Teams to help promote a predicted, safe, clean, healthy, resilient, and productive ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-02-08
    Description: Ocean deoxygenation is a threat to marine ecosystems. We evaluated the potential of two ocean intervention technologies, i.e. “artificial downwelling (AD)” and “artificial upwelling (AU)”, for remedying the expansion of Oxygen Deficient Zones (ODZs). The model‐based assessment simulated AD and AU implementations for 80 years along the eastern Pacific ODZ. When AD was simulated by pumping surface seawater to the 178 ~ 457 m depth range of the ODZ, vertically integrated oxygen increased by up to 4.5% in the deployment region. Pumping water from 457 m depth to the surface (i.e. AU), where it can equilibrate with the atmosphere, increased the vertically integrated oxygen by 1.03%. However, both simulated AD and AU increased biological production via enhanced nutrient supply to the sea surface, resulting in enhanced export production and subsequent aerobic remineralization also outside of the actual implementation region, and an ultimate net decline of global oceanic oxygen.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-01-31
    Description: Gelatinous zooplankton (Cnidaria, Ctenophora, and Urochordata, namely, Thaliacea) are ubiquitous members of plankton communities linking primary production to higher trophic levels and the deep ocean by serving as food and transferring “jelly‐carbon” (jelly‐C) upon bloom collapse. Global biomass within the upper 200 m reaches 0.038 Pg C, which, with a 2–12 months life span, serves as the lower limit for annual jelly‐C production. Using over 90,000 data points from 1934 to 2011 from the Jellyfish Database Initiative as an indication of global biomass (JeDI: http://jedi.nceas.ucsb.edu, http://www.bco‐dmo.org/dataset/526852), upper ocean jelly‐C biomass and production estimates, organism vertical migration, jelly‐C sinking rates, and water column temperature profiles from GLODAPv2, we quantitatively estimate jelly‐C transfer efficiency based on Longhurst Provinces. From the upper 200 m production estimate of 0.038 Pg C year−1, 59–72% reaches 500 m, 46–54% reaches 1,000 m, 43–48% reaches 2,000 m, 32–40% reaches 3,000 m, and 25–33% reaches 4,500 m. This translates into ~0.03, 0.02, 0.01, and 0.01 Pg C year−1, transferred down to 500, 1,000, 2,000, and 4,500 m, respectively. Jelly‐C fluxes and transfer efficiencies can occasionally exceed phytodetrital‐based sediment trap estimates in localized open ocean and continental shelves areas under large gelatinous blooms or jelly‐C mass deposition events, but this remains ephemeral and transient in nature. This transfer of fast and permanently exported carbon reaching the ocean interior via jelly‐C constitutes an important component of the global biological soft‐tissue pump, and should be addressed in ocean biogeochemical models, in particular, at the local and regional scale.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-02-14
    Description: Polar marine ecosystems are particularly vulnerable to the effects of climate change. Warming temperatures, freshening seawater, and disruption to sea-ice formation potentially all have cascading effects on food webs. New approaches are needed to better understand spatiotemporal interactions among biogeochemical processes at the base of Southern Ocean food webs. In marine systems, isoscapes (models of the spatial variation in the stable isotopic composition) of carbon and nitrogen have proven useful in identifying spatial variation in a range of biogeochemical processes, such as nutrient utilization by phytoplankton. Isoscapes provide a baseline for interpreting stable isotope compositions of higher trophic level animals in movement, migration, and diet research. Here, we produce carbon and nitrogen isoscapes across the entire Southern Ocean (〉40°S) using surface particulate organic matter isotope data, collected over the past 50 years. We use Integrated Nested Laplace Approximation-based approaches to predict mean annual isoscapes and four seasonal isoscapes using a suite of environmental data as predictor variables. Clear spatial gradients in δ13C and δ15N values were predicted across the Southern Ocean, consistent with previous statistical and mechanistic views of isotopic variability in this region. We identify strong seasonal variability in both carbon and nitrogen isoscapes, with key implications for the use of static or annual average isoscape baselines in animal studies attempting to document seasonal migratory or foraging behaviors.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-02-07
    Description: The intraplate Hawaiian-Emperor Seamount Chain has long been considered a hotspot track generated by the motion of the Pacific plate over a deep mantle plume, and an ideal feature therefore for studies of volcanic structure, magma supply, plume-crust interaction, flexural loading, and upper mantle rheology. Despite their importance as a major component of the chain, the Emperor Seamounts have been relatively little studied. In this paper, we present the results of an active-source wide-angle reflection and refraction experiment conducted along an ocean-bottom-seismograph (OBS) line oriented perpendicular to the seamount chain, crossing Jimmu guyot. The tomographic P wave velocity model, using ∼20,000 travel times from 26 OBSs, suggests that there is a high-velocity (〉6.0 km/s) intrusive core within the edifice, and the extrusive-to-intrusive ratio is estimated to be ∼2.5, indicating that Jimmu was built mainly by extrusive processes. The total volume for magmatic material above the top of the oceanic crust is ∼5.3 × 104 km3, and the related volume flux is ∼0.96 m3/s during the formation of Jimmu. Under volcanic loading, the ∼5.3-km-thick oceanic crust is depressed by ∼3.8 km over a broad region. Using the standard relationships between Vp and density, the velocity model is verified by gravity modeling, and plate flexure modeling indicates an effective elastic thickness (Te) of ∼14 km. Finally, we find no evidence for large-scale magmatic underplating beneath the pre-existing crust.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...