GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Bailey, Ian; Hole, Georgia M; Foster, Gavin L; Wilson, Paul A; Storey, Craig D; Trueman, Clive N; Raymo, Maureen E (2013): An alternative suggestion for the Pliocene onset of major northern hemisphere glaciation based on the geochemical provenance of North Atlantic Ocean ice-rafted debris. Quaternary Science Reviews, 75(1), 181-194, https://doi.org/10.1016/j.quascirev.2013.06.004
    Publication Date: 2023-06-27
    Description: The onset of abundant ice-rafted debris (IRD) deposition in the Nordic Seas and subpolar North Atlantic Ocean 2.72 millions of years ago (Ma) is thought to record the Pliocene onset of major northern hemisphere glaciation (NHG) due to a synchronous advance of North American Laurentide, Scandinavian and Greenland ice-sheets to their marine calving margins during marine isotope stage (MIS) G6. Numerous marine and terrestrial records from the Nordic Seas region indicate that extensive ice sheets on Greenland and Scandinavia increased IRD inputs to these seas from 2.72 Ma. The timing of ice-sheet expansion on North America as tracked by IRD deposition in the subpolar North Atlantic Ocean, however, is less clear because both Europe and North America are potential sources for icebergs in this region. Moreover, cosmogenic-dating of terrestrial tills on North America indicate that the Laurentide Ice Sheet did not extend to ~39°N until 2.4 ±0.14 Ma, at least 180 ka after the onset of major IRD deposition at 2.72 Ma. To address this problem,we present the first detailed analysis of the geochemical provenance of individual sand-sized IRD deposited in the subpolar North Atlantic Ocean between MIS G6 and 100 (~2.72-2.52 Ma). IRD provenance is assessed using laser ablation lead (Pb) isotope analyses of single ice-rafted (〉150 mm) feldspar grains. To track when an ice-rafting setting consistent with major NHG first occurred in the North Atlantic Ocean during the Pliocene intensification of NHG (iNHG), we investigate when the Pb-isotope composition (206Pb/204Pb, 207Pb/204Pb, 208Pb/204Pb) of feldspars deposited at DSDP Site 611 first resembles that determined for IRD deposited at this site during MIS 100, the oldest glacial for which there exists convincing evidence for widespread glaciation of North America. Whilst Quaternary-magnitude IRD fluxes exist at Site 611 during glacials from 2.72 Ma, we find that the provenance of this IRD is not constant. Instead, we find that the Pb isotope composition of IRD at our study site is not consistent with major NHG until MIS G2 (2.64 Ma). We hypothesise that IRD deposition in the North Atlantic Ocean prior to MIS G2 was dominated by iceberg calving from Greenland and Scandinavia. We further suggest that the grounding line of continental ice on Northeast America may not have extended onto the continental shelf and calved significant numbers of icebergs to the North Atlantic Ocean during glacials until 2.64 Ma.
    Keywords: 94-611_Site; COMPCORE; Composite Core; Deep Sea Drilling Project; DSDP; DSDP/ODP/IODP sample designation; Glomar Challenger; Lead-206/Lead-204 ratio; Lead-206/Lead-204 ratio, error; Lead-207/Lead-204 ratio; Lead-207/Lead-204 ratio, error; Lead-208/Lead-204 ratio; Lead-208/Lead-204 ratio, error; Leg94; North Atlantic/RIDGE; Sample code/label; Sample ID; Stratigraphy
    Type: Dataset
    Format: text/tab-separated-values, 1782 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-01-09
    Keywords: 162-981C; 303-U1308A; 94-611A; Comment; Deep Sea Drilling Project; DEPTH, sediment/rock; DRILL; Drilling/drill rig; DSDP; DSDP/ODP/IODP sample designation; Event label; Exp303; Glomar Challenger; Identification; Integrated Ocean Drilling Program / International Ocean Discovery Program; IODP; Joides Resolution; Lead-206/Lead-204 ratio; Lead-206/Lead-204 ratio, error; Lead-207/Lead-204 ratio; Lead-207/Lead-204 ratio, error; Lead-207/Lead-206, standard error; Lead-207/Lead-206 ratio; Lead-208/Lead-204 ratio; Lead-208/Lead-204 ratio, error; Lead-208/Lead-206 ratio; Lead-208/Lead-206 ratio, error; Leg162; Leg94; Multi-collector inductively coupled plasma mass spectrometer (MC-ICP-MS); North Atlantic/RIDGE; North Atlantic Climate 1; Ocean Drilling Program; ODP; Sample code/label; South Atlantic Ocean
    Type: Dataset
    Format: text/tab-separated-values, 2535 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-03-02
    Keywords: 303-U1308E; 94-609; Comment; Deep Sea Drilling Project; DEPTH, sediment/rock; DRILL; Drilling/drill rig; DSDP; DSDP/ODP/IODP sample designation; Event label; Exp303; Glomar Challenger; Identification; Integrated Ocean Drilling Program / International Ocean Discovery Program; IODP; Joides Resolution; Lead-206/Lead-204 ratio; Lead-206/Lead-204 ratio, error; Lead-207/Lead-204 ratio; Lead-207/Lead-204 ratio, error; Lead-207/Lead-206, standard error; Lead-207/Lead-206 ratio; Lead-208/Lead-204 ratio; Lead-208/Lead-204 ratio, error; Lead-208/Lead-206 ratio; Lead-208/Lead-206 ratio, error; Leg94; Multi-collector inductively coupled plasma mass spectrometer (MC-ICP-MS); North Atlantic/FLANK; North Atlantic Climate 1; Sample code/label
    Type: Dataset
    Format: text/tab-separated-values, 806 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Bailey, Ian; Foster, Gavin L; Wilson, Paul A; Jovane, Luigi; Storey, Craig D; Trueman, Clive N; Becker, Julia (2012): Flux and provenance of ice-rafted debris in the earliest Pleistocene sub-polar North Atlantic Ocean comparable to the last glacial maximum. Earth and Planetary Science Letters, 341-344, 222-233, https://doi.org/10.1016/j.epsl.2012.05.034
    Publication Date: 2024-01-09
    Description: Relatively little is known in detail about the locations of the early Pleistocene ice-sheets responsible for ice-rafted debris (IRD) inputs to the sub-polar North Atlantic Ocean during intensification of northern hemisphere glaciation (iNHG). To shed new light on this problem, we present the first combined in-depth analysis of IRD flux and geochemical provenance of individual sand-sized IRD deposited in the sub-polar North Atlantic Ocean during the earliest large amplitude Pleistocene glacial, marine isotope stage (MIS) 100 (~2.52 Ma), arguably the key glacial during iNHG. IRD provenance is assessed using laser ablation lead (Pb) isotope analyses of single feldspar grains. We find that the Pb-isotope composition (206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb) of individual ice-rafted (〉150 µm) feldspars deposited at DSDP Site 611A, ODP Site 981 and IODP Site U1308 during MIS 100 records a shift from predominantly Archaean-aged circum-North Atlantic Ocean continental sources during early glacial ice-rafting events to dominantly Palaeozoic and Proterozoic-aged sources during full glacial conditions. The distribution of feldspars in Pb-Pb space for full glacial MIS 100 more closely resembles that documented for feldspars deposited at the centre of the last glacial IRD belt (at IODP/DSDP Site U1308/609) during ambient (non-Heinrich-event) ice-rafting episodes of MIS 2 (~23.8 ka) than that documented for MIS 5d (~106 ka). Comparison of our early Pleistocene and last glacial cycle datasets suggests that MIS 100 was characterised by abundant iceberg calving from large ice-sheets on multiple continents in the high northern latitudes (not just on Greenland).
    Keywords: Deep Sea Drilling Project; DSDP; Integrated Ocean Drilling Program / International Ocean Discovery Program; IODP; Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-04-20
    Description: Marine particulate organic carbon-13 stable isotope ratios (δ13C-POC) provide additional constraints and insights into the cycling of carbon from dissolved pools to marine ecosystems including anthropogenic contributions. For such purposes, a robust spatio-temporal coverage of δ13C-POC observations is essential. In this data product, we collected and merged two large data compilations (Close and Henderson, 2020; St John Glew et al., 2021) into our previous version (Verwega et al., 2021) to provide the largest available marine δ13C-POC data set. Additionally, we have incorporated more meta information including if the samples were acidified before measuring the isotope ratio. The data set consists of 6952 data points covering the global ocean from year 1966 to 2019. We provide the data in the following two formats for best application on specific research purposes: (1) A spreadsheet file including all collected individual data and meta-information; (2) Network Common Data Form (NetCDF) files that only include acidified samples (6633 total data points) interpolated onto a global ocean grid (1°x1° horizontal resolution, 33 vertical levels based on World Ocean Atlas 2009) for each month individually and all months combined, with each file covering the temporal range from year 1966 to 2019.
    Keywords: Binary Object; Binary Object (File Size); Binary Object (Media Type); carbon isotope ratio (δ13C); Description; global; marine; ocean; Particulate organic carbon
    Type: Dataset
    Format: text/tab-separated-values, 28 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-02-08
    Description: Sharks are a diverse group of mobile predators that forage across varied spatial scales and have the potential to influence food web dynamics. The ecological consequences of recent declines in shark biomass may extend across broader geographic ranges if shark taxa display common behavioural traits. By tracking the original site of photosynthetic fixation of carbon atoms that were ultimately assimilated into muscle tissues of 5,394 sharks from 114 species, we identify globally consistent biogeographic traits in trophic interactions between sharks found in different habitats. We show that populations of shelf-dwelling sharks derive a substantial proportion of their carbon from regional pelagic sources, but contain individuals that forage within additional isotopically diverse local food webs, such as those supported by terrestrial plant sources, benthic production and macrophytes. In contrast, oceanic sharks seem to use carbon derived from between 30° and 50° of latitude. Global-scale compilations of stable isotope data combined with biogeochemical modelling generate hypotheses regarding animal behaviours that can be tested with other methodological approaches.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-14
    Description: Polar marine ecosystems are particularly vulnerable to the effects of climate change. Warming temperatures, freshening seawater, and disruption to sea-ice formation potentially all have cascading effects on food webs. New approaches are needed to better understand spatiotemporal interactions among biogeochemical processes at the base of Southern Ocean food webs. In marine systems, isoscapes (models of the spatial variation in the stable isotopic composition) of carbon and nitrogen have proven useful in identifying spatial variation in a range of biogeochemical processes, such as nutrient utilization by phytoplankton. Isoscapes provide a baseline for interpreting stable isotope compositions of higher trophic level animals in movement, migration, and diet research. Here, we produce carbon and nitrogen isoscapes across the entire Southern Ocean (〉40°S) using surface particulate organic matter isotope data, collected over the past 50 years. We use Integrated Nested Laplace Approximation-based approaches to predict mean annual isoscapes and four seasonal isoscapes using a suite of environmental data as predictor variables. Clear spatial gradients in δ13C and δ15N values were predicted across the Southern Ocean, consistent with previous statistical and mechanistic views of isotopic variability in this region. We identify strong seasonal variability in both carbon and nitrogen isoscapes, with key implications for the use of static or annual average isoscape baselines in animal studies attempting to document seasonal migratory or foraging behaviors.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Magozzi, S., Thorrold, S. R., Houghton, L., Bendall, V. A., Hetherington, S., Mucientes, G., Natanson, L. J., Queiroz, N., Santos, M. N., & Trueman, C. N. Compound-specific stable isotope analysis of amino acids in pelagic shark vertebrae reveals baseline, trophic, and physiological effects on bulk protein isotope records. Frontiers in Marine Science, 8, (2021): 673016, https://doi.org/10.3389/fmars.2021.673016.
    Description: Variations in stable carbon and nitrogen isotope compositions in incremental tissues of pelagic sharks can be used to infer aspects of their spatial and trophic ecology across life-histories. Interpretations from bulk tissue isotopic compositions are complicated, however, because multiple processes influence these values, including variations in primary producer isotope ratios and consumer diets and physiological processing of metabolites. Here we challenge inferences about shark tropho-spatial ecology drawn from bulk tissue isotope data using data for amino acids. Stable isotope compositions of individual amino acids can partition the isotopic variance in bulk tissue into components associated with primary production on the one hand, and diet and physiology on the other. The carbon framework of essential amino acids (EAAs) can be synthesised de novo only by plants, fungi and bacteria and must be acquired by consumers through the diet. Consequently, the carbon isotopic composition of EAAs in consumers reflects that of primary producers in the location of feeding, whereas that of non-essential amino acids (non-EAAs) is additionally influenced by trophic fractionation and isotope dynamics of metabolic processing. We determined isotope chronologies from vertebrae of individual blue sharks and porbeagles from the North Atlantic. We measured carbon and nitrogen isotope compositions in bulk collagen and carbon isotope compositions of amino acids. Despite variability among individuals, common ontogenetic patterns in bulk isotope compositions were seen in both species. However, while life-history movement inferences from bulk analyses for blue sharks were supported by carbon isotope data from essential amino acids, inferences for porbeagles were not, implying that the observed trends in bulk protein isotope compositions in porbeagles have a trophic or physiological explanation, or are suprious effects. We explored variations in carbon isotope compositions of non-essential amino acids, searching for systematic variations that might imply ontogenetic changes in physiological processing, but patterns were highly variable and did not explain variance in bulk protein δ13C values. Isotopic effects associated with metabolite processing may overwhelm spatial influences that are weak or inconsistently developed in bulk tissue isotope values, but interpreting mechanisms underpinning isotopic variation in patterns in non-essential amino acids remains challenging.
    Description: The internship of SM at the Woods Hole Oceanographic Institution was funded by the School of Ocean and Earth Science at University of Southampton. Stable isotope analyses were paid by CT and ST research budgets and SM Ph.D. and placement funding.
    Keywords: carbon ; essential amino acids ; non-essential amino acids ; migration ; diet ; routing ; blue sharks (Prionace glauca) ; porbeagles (Lamna nasus)
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-04-16
    Description: A rapidly warming Arctic Ocean and associated sea-ice decline is resulting in changing sea-ice protist communities, affecting productivity of under-ice, pelagic, and benthic fauna. Quantifying such effects is hampered by a lack of biomarkers suitable for tracing specific basal resources (primary producers and microorganisms) through food webs. We investigate the potential of δ13C values of essential amino acids (EAAs) (δ13CEAA values) to estimate the proportional use of diverse basal resources by organisms from the under-ice (Apherusa glacialis), pelagic (Calanus hyperboreus) and benthic habitats (sponges, sea cucumber), and the cryo-pelagic fish Boreogadus saida. Two approaches were used: baseline δ13CEAA values, that is, the basal resource specific δ13CEAA values, and δ13CEAA fingerprints, or mean-centred baseline δ13CEAA values. Substantial use of sub-ice algae Melosira arctica by all studied organisms suggests that its role within Arctic food webs is greater than previously recognized. In addition, δ13CEAA fingerprints from algae-associated bacteria were clearly traced to the sponges, with an individually variable kelp use by sea cucumbers. Although mean-centred δ13CEAA values in A. glacialis, C. hyperboreus, and B. saida tissues were aligned with microalgae resources, they were not fully represented by the filtered pelagic- and sea-ice particulate organic matter constituting the spring diatom-dominated algal community. Under-ice and pelagic microalgae use could only be differentiated with baseline δ13CEAA values as similar microalgae clades occur in both habitats. We suggest that δ13CEAA fingerprints combined with microalgae baseline δ13CEAA values are an insightful tool to assess the effect of ongoing changes in Arctic basal resources on their use by organisms.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...