GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2023  (333)
  • 2020-2022  (395)
Document type
Language
Years
Year
  • 1
    Publication Date: 2020-09-23
    Description: Tourism in Antarctica is increasing, with visitors mostly choosing ship cruises often advertised as “Last chance tourism” taking advantage of increasing climate change awareness. While the existing guidelines for tourist operators are designed to protect this fragile region, many aspects of the local fauna, such as animal distribution and behavior, are still largely unknown due to difficulties studying these species. Without supporting data, it is challenging to design effective measures that minimize negative impacts of cruise ships on the Antarctic environment. A potential negative impact is the anthropogenic underwater noise generated by the vessels visiting the areas. Marine mammals rely on sound for many purposes such as foraging, orientation and reproduction. Ship noise can therefore potentially affect critical life phases of these species. Here we present a case study investigating how vessel acoustic presence affects the vocal behavior and timing of acoustic presence of leopard seals (Hydrurga leptonyx, LS) and Ross seals (Ommatophoca rossii, RS). RS are one of the least studied Antarctic species. Both pinniped spe cies are known to mainly produce underwater sounds during the mating season, presumably to attract mating partners in pack-ice areas. The German research icebreaker Polarstern (PS) annually resupplies Neumayer Station III (NS) - the German Antarctic Research Facility. Its arrival at the pier where cargo is unloaded has been noted to coincide with the onset of pinniped vocal activity in this area. Here, we use passive acoustic data that were recorded close to the pier over a 5-year period to investigate and compare how seal vocal behavior and vocal activity relate to the timing of ship arrival, presence and departure. The seals’ behavior over the relatively short analysis period of 5 years was complex due to their natural calling variation within life phases (before, during and after mating season). Thus, interpretation was not always straightforward. The arrival timing of the PS had an effect on RS, which delayed their appearance in 2010 and 2011 coinciding with the anticipated arrival of the ice-breaker. However, once arrived, both species showed no avoidance behavior and calling times remained unchanged despite PS. LS and RS calling activity decreased significantly during PS presence, but tended to recover instantly post PS departure. It is therefore unlikely that the animals left the area completely and decrease in calling may instead be related to masking. However, further research is needed to further explore what caused the decrease in calling. Both LS and RS seemed to use higher frequency call types during PS presence. The seals’ arrival times are also affected by prevailing ice conditions and associated food distribution. LS arrival time differed within the 5 years, whereas the RS arrived slightly earlier each year. The marine soundscape planning approach was applied to explore how ship arrivals can be timed to minimize potential disturbances. Ship quietening techniques and reduced ship speeds can also contribute to reduced underwater noise levels. Lastly, stricter legislative measures are needed to regulate which regions during which periods can be used for tourism.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Thesis , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Svalbard Integrated Arctic Earth Observing System (SIOS)
    In:  EPIC3Longyearbyen, Norway, Svalbard Integrated Arctic Earth Observing System (SIOS), 96 p., ISBN: 978-82-93871-03-3
    Publication Date: 2022-07-04
    Description: Executive Summary The State of Environmental Science in Svalbard (SESS) report 2021 together with its predecessors contributes to the documentation of the state of the Arctic environment in and around Svalbard, and highlights research conducted within the Svalbard Integrated Arctic Earth Observing System (SIOS). Climate change is a global problem, but many of its impacts are being felt most strongly in the Arctic. Given its remote but accessible location, Svalbard constitutes an ideal place to study the Arctic environment in general, including, more specifically, the causes and consequences of climate change. The Arctic Climate Change Update (2021) emphasised the severity of global climate change for ecosystems across the Arctic. They are undergoing radical changes regarding their structure and functioning, affecting flora, fauna and livelihoods of Arctic communities. Oceanic ecosystems and food webs are directly and indirectly altered by the warming and freshening of the Arctic Ocean. A prolonged open water period and the expansion of open water areas caused by declining sea ice affect under-ice productivity and diversity. These changes have cascading effects through ecosystems and impact the distribution, abundance and seasonality of a variety of marine species. Svalbard is located at one of the key oceanic gateways to the Arctic. This land–ice–ocean transition zone is a system particularly vulnerable to environmental changes. Svalbard’s environment is influenced by maritime processes; thus extensive observation of the ocean system is nowadays necessary. The chapter on the iMOP project reports seawater temperature and salinity variability over the last decades and indicates changes of Svalbard fjord seawater properties. The chapter highlights the role of a collaborative and supportive network of observatory operators and encourages joint planning and maintenance of future marine observatories. Arctic vegetation plays a key role in land–atmosphere interactions. Alterations can lead to ecosystem–climate feedbacks and exacerbate climate change. Extreme precipitation events are already becoming more frequent. Together with an increasing rain-to-snow ratio they impact the structure and functioning of terrestrial ecosystems. Dynamics in Arctic tundra ecosystems are expected to undergo fundamental changes with increasing temperatures as predicted by climate models. To detect, document, understand and predict those changes, COAT Svalbard provides a long-term and real-time operational observation system through ecosystem-based terrestrial monitoring. The observation system consists of six modules comprising food web pathways as well as one climate-monitoring module and focuses on two contrasting regions in Svalbard to allow for intercomparison. To date, the project has done an initial assessment of tundra ecosystems in Norway and will now begin with the long-term ecosystembased monitoring. For remote regions such as the Svalbard archipelago, terrestrial photography is a crucial addition to satellite imagery, because land-based cameras offer high temporal resolution and insensitivity towards varying weather conditions. PASSES provides an overview of cameras operating in Svalbard managed by research institutions and private companies. The survey revealed difficulties and knowledge gaps preventing the full potential of the terrestrial photography network in Svalbard from being used. Therefore, PASSES recommends the creation of a Svalbard camera system network. The effects of climate change contributed to a specific anomaly of the springtime Arctic atmosphere, namely a pronounced depletion of stratospheric ozone during March and April 2020, which can be called an Arctic ozone hole. In Svalbard, the amount of ozone loss was recorded by ground-based dedicated spectroscopic instruments measuring the total ozone column as well as the UV irradiance (EXAODEP-2020, an update of UV Ozone). The latter is important for effects on the biota. Corresponding erythemal daily doses for spring 2020 show a doubling compared to previous years with less or no ozone depletion. While the correspondence between ozone loss and increase in UV doses follows a well-known relationship, the possible later consequences of the observed springtime increase of UV doses on Svalbard’s environment need to be further studied. A particular method to observe the Svalbard environment, which has seen a very strong increase in usage during recent years, is the application of unmanned airborne or marine vehicles. The update on recent publications using these devices (UAV Svalbard) reveals that especially conventional remotely operated aerial vehicles (drones) with camera equipment are now widely used. It is recommended to SIOS to foster interdisciplinary communication among the multitude of drone users to establish exchange of information and data. New EU regulations for drone operations are being put in place from 2022 onwards also in Svalbard. Climate services are receiving more and more attention from Arctic countries, because they translate data into relevant and timely information, thereby supporting governments, societies and industries in planning and decision-making processes. SIOS contributes to climate services by providing research infrastructure with an overarching goal to develop and maintain a regional observational system for long-term measurements in and around Svalbard. The SIOS Core Data (SCD) consists of a list of essential Earth System Science variables relevant to determine environmental change in the Arctic. SCD is developed to improve the relevance and availability of scientific information addressing ESS topics for decision-making. SIOS Core Data providers have committed to maintain the observations for at least five years, to make the data publicly available, and to follow advanced principles of scientific data management and stewardship. Arctic climate change is posing risks to the safety, health and well-being of Arctic communities and ecosystems. Still, there remain gaps in our understanding of physical processes and societal implications. The authors of the SESS chapters have highlighted some unanswered questions and suggested concrete actions that should be taken to address them. The editors would like to thank the authors for their valuable contributions to the SESS Report 2021. These chapters illustrate how SIOS projects contribute to ensure the future vitality and resilience of Arctic peoples, communities and ecosystems.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Book , NonPeerReviewed
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-01-13
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-07-07
    Type: info:eu-repo/semantics/other
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-07-23
    Description: This open access book presents the results of three years collaboration between earth scientists and data scientists, in developing and applying data science methods for scientific discovery. The book will be highly beneficial for other researchers at senior and graduate level, interested in applying visual data exploration, computational approaches and scientifc workflows.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Book , NonPeerReviewed
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-03-27
    Description: Widespread global declines in shellfish reefs (ecosystem-forming bivalves such as oysters and mussels) have led to growing interest in their restoration and protection. With restoration projects now occurring on four continents and in at least seven countries, global restoration guidelines for these ecosystems have been developed based on experience over the past two decades. The following key elements of the guidelines are outlined: (a) the case for shellfish reef resto- ration and securing financial resources; (b) planning, feasibility, and goal set- ting; (c) biosecurity and permitting; (d) restoration in practice; (e) scaling up from pilot to larger scale restoration, (f) monitoring, (g) restoration beyond oyster reefs (specifically mussels), and (h) successful communication for shell- fish reef restoration projects.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  EPIC3Environment and Planning D: Society and Space, pp. 026377582110423, ISSN: 0263-7758
    Publication Date: 2021-10-14
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-12-10
    Description: In January 2020, a scientific borehole planning workshop sponsored by the International Continental Scientific Drilling Program was convened at Cornell University in the northeastern United States. Cornell is planning to drill test wells to evaluate the potential to use geothermal heat from depths in the range of 2700–4500 m and rock temperatures of about 60 to 120 ∘C to heat its campus buildings. Cornell encourages the Earth sciences community to envision how these boreholes can also be used to advance high-priority subsurface research questions. Because nearly all scientific boreholes on the continents are targeted to examine iconic situations, there are large gaps in understanding of the “average” intraplate continental crust. Hence, there is uncommon and widely applicable value to boring and investigating a “boring” location. The workshop focused on designing projects to investigate the coupled thermal–chemical–hydrological–mechanical workings of continental crust. Connecting the practical and scientific goals of the boreholes are a set of currently unanswered questions that have a common root: the complex relationships among pore pressure, stress, and strain in a heterogeneous and discontinuous rock mass across conditions spanning from natural to human perturbations and short to long timescales. The need for data and subsurface characterization vital for decision-making around the prospective Cornell geothermal system provides opportunities for experimentation, measurement, and sampling that might lead to major advances in the understanding of hydrogeology, intraplate seismicity, and fluid/chemical cycling. Subsurface samples could also enable regional geological studies and geobiology research. Following the workshop, the U.S. Department of Energy awarded funds for a first exploratory borehole, whose proposed design and research plan rely extensively on the ICDP workshop recommendations.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Technische Universität Berlin
    Publication Date: 2021-03-08
    Description: Background: Agriculture is a large and dynamic sector, essential for the supply of the population and thus in a complex area of tension. The growing population and the resulting need for optimization, greater efficiency and intensification are in direct conflict with the demand for sustainability, environmental compatibility and, above all, mitigation of climate change and its consequences. Precision agriculture can make a decisive contribution to increasing efficiency in particular. Because through the targeted and demand-oriented application of fertilizers and pesticides, but also spatially variable sowing, resources can be used better and in the best case even increase yields. Above all, if fertilizers are applied in the way that the plants need and can absorb them, in contrast to uniform application across the entire field, a surplus that can be washed into the groundwater can be avoided. A basis is therefore needed on which this variable application of resources can be determined. In practice, maps of current condition in the form of zones in the field or on-the-go measurements from sensors on the tractor are often used here. However, for comprehensive planning and holistic cultivation of crop, current and past spatial information maps, such as zone maps, are necessary. Satellite data are a data basis for such zones, as they are available in various types, current and retrospective and cover large areas spatially. Objective: This work explores possibilities to derive this zoning from satellite data and developes different approaches. The interrelations between satellite data, geoinformation data and agricultural data such as yield will be investigated and combined. The focus of the method development is the applicability in practice and the associated requirements of the farmer. Data: For method development and analysis 179 RapidEye scenes, 512 Landsat scenes, 43 Sentinel-2 scenes and 21 Planetscope scenes were used. Furthermore, the soil map „Bodenschätzung“, which not only transmits the information about the respective soil type, but also a quantification of the fertility respectively the yield potential in the form of „Bodenzahl“ and „Ackerzahl“. Digital terrain models in different spatial resolutions were used as well as in-situ measurements of nutrients, electrical conductivity and phenology. Methods and Results: In this thesis two methods and a data analysis are presented. The first method uses only optical satellite data (RapidEye) and processes these automatically into five relative yield zones, which reflect the expected relative yield averaged over several years. The method independently selects the appropriate data sets for a prescribed field, using different thresholds resulting from the reflectance values of individual bands. The zones are then separated on the basis of quantile values using an synthetic, averaged raster of the near infrared bands. The method is validated with actual yield data using the characteristics of box plots. The yield zones generated can then be used as management zones in precision farming. The second method also generates relative yield zones, suitable for use as a management zone, using RapidEye satellite data as well as soil map and relief information. This data fusion for yield zone modeling is based on belief structures and uses the Transferable Belief Model. Thus, individual expert knowledge from practical agriculture can be integrated into the fusion process. The knowledge generated in the course of method development about the relationship between remote sensing and GIS data and the actual yield on the field will be extended and consolidated in a large-scale data analysis with a time series of 13 years and 755 satellite scenes. It shows that there is a strong correlation between satellite data and yield data (up to a correlation value of r = 0.75, some values even higher). However, this correlation depends strongly on the phenological timing of - in this case - cereals and canola. In addition, the spectral and spatial resolution, as well as the growing conditions and the soil available water. Conclusion: Satellite data are very well suited for agricultural applications and for the derivation of management zones for precision crop cultivation. However, a lot of expert knowledge has to be applied in the selection of the appropriate remote sensing data as well as in the processing and methodology. The scientific and practical use of remote sensing data should be adapted to the specific problem and external conditions.
    Description: Hintergrund: Die Landwirtschaft ist ein großer und dynamischer Sektor, essentiell für die Versorgung der Bevölkerung und dadurch in einem komplexen Spannungsfeld. Die steigende Bevölkerung und der dadurch bestehende Bedarf an Optimierung, mehr Effizienz und Intensivierung steht im direkten Konflikt mit dem Anspruch nach Nachhaltigkeit, Umweltverträglichkeit aber vor allem der Eindämmung des Klimawandels und seiner Folgen. Gerade bei Fragen der Effizienzsteigerung kann der Bereich der Präzisionslandwirtschaft einen entscheidenden Beitrag leisten. Denn durch die gezielte und bedarfsorientierte Anwendung von Dünger und Pflanzenschutzmitteln, aber auch die gezielte und räumlich variable angepasste Aussaat, können Ressource besser genutzt werden und im besten Falle den Ertrag sogar steigern. Vor allem wenn Düngemittel so ausgebracht werden, wie die Pflanzen ihn benötigen und aufnehmen können, im Gegensatz zu einer uniformen Ausbringung über das ganze Feld hinweg, kann ein Überschuss, welcher in das Grundwasser ausgewaschen werden kann, vermieden werden. Es braucht also eine Grundlage, auf welcher diese variable Ausbringung von Ressourcen bestimmt wird. Hier werden in der Praxis oft Zustandskarten in Form von Zonen im Feld verwendet oder „on-the-go“-Messungen von Sensoren auf dem Traktor. Für die umfassende Planung und eine holistische Bearbeitung der Bestände sind aber aktuelle und zurückliegende, wie zusammenfassende Zustandskarten, beziehungsweise Zonenkarten nötig. Eine Datengrundlage für solche Zonen sind Satellitendaten, da sie in verschiedenster Art, aktuell und retroperspektiv vorliegen und große Flächen räumlich erfassen. Ziel: Diese Arbeit erforscht Möglichkeiten aus Satellitendaten eben diese Zonierung abzuleiten und sucht dabei verschiedene Herangehensweisen. Es sollen die Zusammenhänge zwischen Satellitendaten, Daten der Geoinformation und landwirtschaftlicher Daten wie Ertrag untersucht und miteinander kombiniert werden. Im Fokus der Methodenentwicklung steht die Anwendbarkeit in der Praxis und die somit einhergehenden Anforderungen des Landwirtes. Daten: Für die Methodenentwicklung und die Analyse wurden 179 RapidEye Szenen, 512 Landsat-Szenen, 43 Sentinel-2 Szenen und 21 Planetscope-Szenen verwendet. Weiterhin die Bodenkarte Bodenschätzung, welche nicht nur die Informationen über die jeweilige Bodenart übermittelt, aber auch eine Quantifizierung der Fruchtbarkeit beziehungsweise des Ertragspotentials in Form von „Bodenzahl“ und „Ackerzahl“. Digitale Geländemodell in unterschiedlichen räumlichen Auflösungen wurden verwendet, ebenso wie in-situ-Messungen von Nährstoffen, elektrischer Leitfähigkeit und Phänologie. Methoden und Ergebnisse: In dieser Doktorarbeit werden zwei Methoden und eine Datenanalyse vorgestellt. Die erste Methode verwendet einzig optische Satellitendaten (RapidEye) und verarbeitet diese automatisiert zu fünf relativen Ertragszonen, welche den zu erwartenden relativen Ertrag gemittelt über mehrere Jahre spiegelt. Die Methode wählt dabei eigenständig die passenden Datensätze für ein vorgeschriebenes Feld aus, unter Verwendung verschiedener Schwellwerte, die sich aus den Rückstrahlwerten einzelner Bänder ergeben. Auf Basis eines gemittelten Rasters der Bänder des nahen Infrarots werden dann auf Basis von Quartilswerten die Zonen separiert. Die Methode wird mit tatsächlichen Ertragsdaten mithilfe der Charakteristika von Boxplots validiert Die erzeugten Ertragszonen können dann als Bearbeitungszonen in der Präzisionslandwirtschaft verwendet werden. Die zweite Methode erzeugt ebenfalls relative Ertragszonen, geeignet für die Verwendung als Management Zone, verwendet neben RapidEye Satellitendaten auch die Informationen der Bodenkarte und des Reliefs. Diese Datenfusion zur Modellierung von Ertragszonen basiert auf Überzeugungsstrukturen und verwendet das Transferable Belief Model. Somit kann individuelles Expertenwissen aus der praktischen Landwirtschaft in den Fusionsprozess integrieren werden. Die Erkenntnisse, die im Laufe der Methodenentwicklung über die Zusammenhänge von Fernerkundungs- und GIS Daten und dem tatsächlichen Ertrag auf dem Feld generiert wurden, werden in einer großangelegten Datenanalyse mit einer Zeitreihe von 13 Jahren und 755 Satellitenszenen erweitert und gefestigt. Sie zeigt, dass es einen starken Zusammenhang zwischen Satellitendaten und Ertragsdaten gibt (bis zu einem Korrelationswert von r = 0.75, einzelne Werte höher). Diese Korrelation hängt aber stark ab vom phänologischen Zeitpunkt von – in diesem Falle – Getreide und Raps. Außerdem von der spektralen und räumlichen Auflösung, sowie den Wachstumsbedingungen und dem bodenverfügbaren Wasser. Fazit: Satellitendaten eignen sich sehr gut für die Anwendung in der Landwirtschaft und für die Ableitung von Bearbeitungszonen für den Präzisionspflanzenbau. Allerdings muss in der Auswahl der passenden Fernerkundungsdaten und auch der Verarbeitung und Methodik viel Expertenwissen angewandt werden. Die wissenschaftliche und praktische Verwendung von Fernerkundungsdaten sollte an die spezifische Fragestellung und die äußeren Bedingungen angepasst werden.
    Type: info:eu-repo/semantics/doctoralThesis
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-02-18
    Description: This assessment report identifies six key areas of sustainable consumption. Transforming those areas is associated with a significant, positive impact on sustainable development. In this way, those key areas lay the foundation to set clear priorities and formulate concrete policy measures and recommendations. The report describes recent developments and relevant actors in those six fields, outlines drivers and barriers to reach a shift towards more sustainability in those specific areas, and explores international good-practice examples. On top of this, overarching topics in the scientific discourse concerning sustainable consumption (e.g. collaborative economy, behavioural economics and nudging) are revealed by using innovative text-mining techniques. Subsequently, the report outlines the contributions of these research approaches to transforming the key areas of sustainable consumption. Finally, the report derives policy recommendations to improve the German Sustainable Development Strategy (DNS) in order to achieve a stronger stimulus effect for sustainable consumption.
    Keywords: ddc:300
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: report , doc-type:report
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...