GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Years
  • 1
    Publication Date: 2024-04-13
    Description: This data set contains the hydrographic water sample data collected with a CTD rosette in a shelter on the ice (Ocean City) during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC). The CTD is an SBE911plus with 12 bottles, 5 liters each, operated with a small winch and crane in the shelter on the ice. The data set contains calibrated and quality-controlled parameters (temperature, conductivity, oxygen and their derived variables) as well as only pre-cruise calibrated parameters where no post-cruise calibration or quality control was applied (all other). CDOM fluorescence data are the exception. Quality control was performed but data have to be handled with care, as the sensor seems to have broken down during leg 3 such that no post-cruise calibration could be applied. Due to issues during processing SPAR data is missing in the bottle data. The data are provided as text file (all cruise legs in one file) as well as in netCDF format (one file per cruise leg). The accuracy for salinity and conductivity is 0.004 while the accuracy for temperature is 0.002. Additional information on the sensor used for the final data set, the water depth as well as the availability of profile or bottle data is given in a separate info-text-file. Contact: Sandra.Tippenhauer@awi.de Quality flags are given based on paragraph 6. "Quality flags" from https://www.seadatanet.org/content/download/596/file/SeaDataNet_QC_procedures_V2_%28May_2010%29.pdf. QC flag meanings: 0 = unknown, 1 = good_data, 2 = probably good_data, 3 = probably bad data, 4 = bad data set to nan. This work was carried out and data was produced as part of the international Multidisciplinary drifting Observatory for the Study of the Arctic Climate (MOSAiC) with the tag MOSAiC20192020. We thank all persons involved in the expedition of the Research Vessel Polarstern during MOSAiC in 2019-2020 (AWI_PS122_00) as listed in Nixdorf et al. (2021).
    Keywords: Advective Pathways of nutrients and key Ecological substances in the ARctic; APEAR; Arctic Ocean; Attenuation, optical beam transmission; AWI_PhyOce; Bottle number; Chlorophyll a; Conductivity; CTD; CTD, Seabird; CTD, Sea-Bird, SBE 911plus; CTD, Sea-Bird, SBE 911plus, measured with Temperature sensor, Sea-Bird, SBE3plus; CTD, Sea-Bird, SBE 911plus; Calculation according to Bittig et al. (2018); CTD, Sea-Bird, SBE 911plus; Calculation according to McDougall and Barker (2011); CTD, Sea-Bird, SBE 911plus; measured with Conductivity sensor, Sea-Bird, SBE 4; CTD, Sea-Bird, SBE 911plus; measured with Dissolved oxygen sensor, Sea-Bird, SBE 43; CTD, Sea-Bird, SBE 911plus; measured with Fluorometer, Turner Designs, Cyclops-6k 2160-000-R; CTD, Sea-Bird, SBE 911plus; measured with Fluorometer, WET Labs, ECO FLRTD; CTD, Sea-Bird, SBE 911plus; measured with PAR sensor, Biospherical Instruments Inc., QCP2300-HP; CTD/Rosette; CTD-R; CTD-RO; DATE/TIME; Density, potential anomaly; DEPTH, water; Event label; Fluorescence, colored dissolved organic matter; HAVOC; LATITUDE; LONGITUDE; MOSAiC; MOSAIC_PO; MOSAiC20192020; MOSAiC expedition; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Oxygen; Oxygen, dissolved; Oxygen saturation; Physical Oceanography @ AWI; Polarstern; Pressure, water; PS122/1; PS122/1_10-14; PS122/1_10-26; PS122/1_10-45; PS122/1_11-17; PS122/1_11-40; PS122/1_4-37; PS122/1_5-40; PS122/1_5-46; PS122/1_5-59; PS122/1_6-122; PS122/1_6-17; PS122/1_6-38; PS122/1_7-15; PS122/1_7-40; PS122/1_8-16; PS122/1_9-28; PS122/1_9-47; PS122/1_99-78; PS122/1_99-80; PS122/1_99-81; PS122/1_99-82; PS122/2; PS122/2_16-54; PS122/2_16-94; PS122/2_17-18; PS122/2_17-7; PS122/2_17-78; PS122/2_17-8; PS122/2_18-16; PS122/2_18-5; PS122/2_18-81; PS122/2_19-18; PS122/2_19-4; PS122/2_19-89; PS122/2_20-109; PS122/2_20-17; PS122/2_20-2; PS122/2_21-1; PS122/2_21-101; PS122/2_21-114; PS122/2_21-128; PS122/2_21-26; PS122/2_22-18; PS122/2_22-3; PS122/2_22-49; PS122/2_22-71; PS122/2_23-17; PS122/2_23-4; PS122/2_23-70; PS122/2_23-97; PS122/2_24-47; PS122/2_25-26; PS122/2_25-4; PS122/3; PS122/3_29-74; PS122/3_29-8; PS122/3_30-38; PS122/3_30-40; PS122/3_30-41; PS122/3_30-9; PS122/3_31-18; PS122/3_31-19; PS122/3_31-81; PS122/3_32-12; PS122/3_32-38; PS122/3_32-75; PS122/3_32-76; PS122/3_32-77; PS122/3_33-69; PS122/3_33-70; PS122/3_33-71; PS122/3_33-80; PS122/3_33-82; PS122/3_34-17; PS122/3_34-64; PS122/3_34-65; PS122/3_34-66; PS122/3_34-67; PS122/3_34-76; PS122/3_34-77; PS122/3_35-25; PS122/3_35-60; PS122/3_35-61; PS122/3_35-62; PS122/3_35-63; PS122/3_35-77; PS122/3_35-92; PS122/3_36-115; PS122/3_36-17; PS122/3_36-18; PS122/3_36-19; PS122/3_36-59; PS122/3_36-81; PS122/3_36-83; PS122/3_36-84; PS122/3_36-85; PS122/3_37-116; PS122/3_37-14; PS122/3_37-15; PS122/3_37-45; PS122/3_37-46; PS122/3_37-47; PS122/3_37-88; PS122/3_37-99; PS122/3_38-100; PS122/3_38-31; PS122/3_38-5; PS122/3_38-54; PS122/3_38-55; PS122/3_38-56; PS122/3_38-69; PS122/3_39-16; PS122/3_39-51; PS122/3_39-52; PS122/3_39-53; PS122/3_39-54; PS122/3_39-69; PS122/3_39-70; PS122/3_39-82; PS122/3_99-86; Quality flag, attenuation; Quality flag, chlorophyll; Quality flag, conductivity; Quality flag, conservative water temperature; Quality flag, density; Quality flag, fluorescence, colored dissolved organic matter; Quality flag, irradiance; Quality flag, oxygen; Quality flag, rhodamine; Quality flag, salinity; Quality flag, water temperature; Radiation, photosynthetically active; Rhodamine; Ridges - Safe HAVens for ice-associated Flora and Fauna in a Seasonally ice-covered Arctic OCean; Salinity; Salinity, absolute; Seadatanet flag: Data quality control procedures according to SeaDataNet (2010); Temperature, water; Temperature, water, conservative; Temperature, water, potential; WAOW; Why is the deep Arctic Ocean Warming?
    Type: Dataset
    Format: text/tab-separated-values, 34836 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-04-13
    Description: This data set contains the hydrographic water sample data collected with the ship based CTD rosette during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC). The CTD is an SBE911plus with 24 bottles, 12 liters each, operated with a winch and crane on the side of Polarstern. The data set contains calibrated and quality-controlled parameters (temperature, conductivity, oxygen and their derived variables) as well as only pre-cruise calibrated parameters where no post-cruise calibration or quality control was applied (all other). CDOM fluorescence data are the exception. Quality control was performed but data have to be handled with care, as the sensor seems to have broken down during leg 3 such that no post-cruise calibration could be applied. Due to issues during processing SPAR data is missing in the bottle data. The data are provided as text file (all cruise legs in one file) as well as in netCDF format (one file per cruise leg). The accuracy for salinity and conductivity is 0.004 while the accuracy for temperature is 0.002. Additional information on the sensor used for the final data set, the water depth as well as the availability of profile or bottle data is given in a separate info-text-file. Contact: Sandra.Tippenhauer@awi.de. Quality flags are given based on paragraph 6. "Quality flags" from https://www.seadatanet.org/content/download/596/file/SeaDataNet_QC_procedures_V2_%28May_2010%29.pdf. QC flag meanings: 0 = unknown, 1 = good_data, 2 = probably good_data, 3 = probably bad data, 4 = bad data set to nan. This work was carried out and data was produced as part of the international Multidisciplinary drifting Observatory for the Study of the Arctic Climate (MOSAiC) with the tag MOSAiC20192020. We thank all persons involved in the expedition of the Research Vessel Polarstern during MOSAiC in 2019-2020 (AWI_PS122_00) as listed in Nixdorf et al. (2021).
    Keywords: Advective Pathways of nutrients and key Ecological substances in the ARctic; APEAR; Arctic Ocean; Attenuation, optical beam transmission; AWI_PhyOce; Bottle number; Chlorophyll a; Conductivity; CTD; CTD, Sea-Bird, SBE 911plus; CTD, Sea-Bird, SBE 911plus, measured with Temperature sensor, Sea-Bird, SBE3plus; CTD, Sea-Bird, SBE 911plus; Calculation according to Bittig et al. (2018); CTD, Sea-Bird, SBE 911plus; Calculation according to McDougall and Barker (2011); CTD, Sea-Bird, SBE 911plus; measured with Conductivity sensor, Sea-Bird, SBE 4; CTD, Sea-Bird, SBE 911plus; measured with Dissolved oxygen sensor, Sea-Bird, SBE 43; CTD, Sea-Bird, SBE 911plus; measured with Fluorometer, Turner Designs, Cyclops-6k 2160-000-R; CTD, Sea-Bird, SBE 911plus; measured with Fluorometer, WET Labs, ECO FLRTD; CTD, Sea-Bird, SBE 911plus; measured with PAR sensor, Biospherical Instruments Inc., QCP2300-HP; CTD, Sea-Bird, SBE 911plus; measured with Transmissometer, WET Labs, C-Star; CTD/Rosette; CTD-RO; DATE/TIME; Density, potential anomaly; DEPTH, water; Event label; Fluorescence, colored dissolved organic matter; HAVOC; LATITUDE; LONGITUDE; MOSAiC; MOSAIC_PO; MOSAiC20192020; MOSAiC expedition; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Oxygen; Oxygen, dissolved; Oxygen saturation; Physical Oceanography @ AWI; Polarstern; Pressure, water; PS122/1; PS122/1_10-41; PS122/1_10-44; PS122/1_10-60; PS122/1_10-64; PS122/1_2-68; PS122/1_6-58; PS122/1_6-79; PS122/1_6-81; PS122/1_7-47; PS122/1_7-49; PS122/1_7-80; PS122/1_8-43; PS122/1_8-46; PS122/1_8-71; PS122/1_8-98; PS122/1_9-50; PS122/1_9-61; PS122/1_9-67; PS122/1_9-87; PS122/2; PS122/2_16-21; PS122/2_16-34; PS122/2_17-39; PS122/2_17-41; PS122/2_17-64; PS122/2_17-68; PS122/2_18-32; PS122/2_18-34; PS122/2_18-57; PS122/2_18-74; PS122/2_19-55; PS122/2_19-56; PS122/2_19-76; PS122/2_19-77; PS122/2_20-45; PS122/2_20-46; PS122/2_20-71; PS122/2_20-73; PS122/2_21-64; PS122/2_21-65; PS122/2_22-42; PS122/2_22-47; PS122/2_22-63; PS122/2_23-46; PS122/2_23-63; PS122/2_24-2; PS122/2_24-4; PS122/2_25-52; PS122/2_25-54; PS122/2_25-71; PS122/2_25-73; PS122/3; PS122/3_30-53; PS122/3_30-64; PS122/3_31-39; PS122/3_31-59; PS122/3_31-63; PS122/3_40-36; PS122/3_42-32; PS122/4; PS122/4_44-184; PS122/4_44-187; PS122/4_44-202; PS122/4_44-67; PS122/4_44-76; PS122/4_45-100; PS122/4_45-121; PS122/4_45-3; PS122/4_45-31; PS122/4_45-48; PS122/4_45-53; PS122/4_45-75; PS122/4_45-79; PS122/4_45-82; PS122/4_45-85; PS122/4_45-9; PS122/4_45-96; PS122/4_46-15; PS122/4_46-2; PS122/4_46-35; PS122/4_46-56; PS122/4_46-60; PS122/4_46-83; PS122/4_46-87; PS122/4_46-91; PS122/4_47-108; PS122/4_47-52; PS122/4_47-60; PS122/4_48-121; PS122/4_48-15; PS122/4_48-155; PS122/4_48-29; PS122/4_48-60; PS122/4_48-62; PS122/4_48-96; PS122/4_49-10; PS122/4_49-14; PS122/4_49-2; PS122/4_49-25; PS122/4_49-36; PS122/4_49-5; PS122/4_50-21; PS122/4_50-52; PS122/5; PS122/5_59-138; PS122/5_59-149; PS122/5_59-272; PS122/5_59-274; PS122/5_59-305; PS122/5_59-306; PS122/5_59-357; PS122/5_59-363; PS122/5_59-62; PS122/5_59-72; PS122/5_60-67; PS122/5_60-69; PS122/5_60-89; PS122/5_61-128; PS122/5_61-159; PS122/5_61-161; PS122/5_61-189; PS122/5_61-211; PS122/5_62-38; PS122/5_62-4; PS122/5_62-66; PS122/5_62-88; PS122/5_62-91; PS122/5_63-100; PS122/5_63-110; PS122/5_63-111; PS122/5_63-35; PS122/5_63-53; Quality flag, attenuation; Quality flag, chlorophyll; Quality flag, conductivity; Quality flag, conservative water temperature; Quality flag, density; Quality flag, fluorescence, colored dissolved organic matter; Quality flag, irradiance; Quality flag, oxygen; Quality flag, rhodamine; Quality flag, salinity; Quality flag, water temperature; Radiation, photosynthetically active; Rhodamine; Ridges - Safe HAVens for ice-associated Flora and Fauna in a Seasonally ice-covered Arctic OCean; Salinity; Salinity, absolute; Seadatanet flag: Data quality control procedures according to SeaDataNet (2010); Temperature, water; Temperature, water, conservative; Temperature, water, potential; WAOW; Why is the deep Arctic Ocean Warming?
    Type: Dataset
    Format: text/tab-separated-values, 86269 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-04-20
    Description: Two RBR Concerto Conductivity Temperature Depth (CTD) sensors (SN 60611 & SN 60610) were deployed as part of the Sea Ice Ridge Observatory, also called Fort Ridge, in the Arctic Ocean during the 2nd leg of the MOSAiC ice drift expedition in February 2020. The CTDs are autonomous instruments that measured conductivity (salinity), temperature, and pressure (depth) approximately 2-3 m below the sea ice on either side of a large ice ridge. The RBR 60610 was lost due to ice rafting before data was downloaded. The RBR 60611 was recovered in May 2020, resulting in one time series between January 3rd and May 6th2020. RBR 60611 was redeployed on May 6th but also lost due to ice rafting shortly after. Each CTD was deployed together with a Nortek Signature1000 acoustic Doppler current profiler (doi:10.1594/PANGAEA.941882), installed at a 2 m distance. Here we describe the instrument hardware, setup, and processing that resulted in the final data set. The instruments were deployed as part of the project Ridges - Safe HAVens for ice-associated Flora and Fauna in a Seasonally ice-covered Arctic OCean (HAVOC), funded by the Research Council of Norway, project number: 280292.
    Keywords: Arctic; Arctic Ocean; CTD, RBR, RBRConcerto C.T.D.; CTD data; HAVOC; Mosaic; MOSAiC; MOSAIC_PO; MOSAiC20192020; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122/2; PS122/2_14-310; PS122/3; PS122/3_28-144; RBR_CTD; ridge flank; Ridges - Safe HAVens for ice-associated Flora and Fauna in a Seasonally ice-covered Arctic OCean; Sea ice
    Type: Dataset
    Format: application/x-netcdf, 60 MBytes
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-04-20
    Description: Two Nortek Signature1000 acoustic Doppler current profilers (SN 100098 & SN 101048) were deployed as part of the Sea Ice Ridge Observatory (also called Fort Ridge) in the Arctic Ocean during the 2nd leg of the MOSAiC ice drift expedition in February 2020. The ADCPs are autonomous instruments that measured ice-relative horizontal and vertical ocean currents and turbulence in the upper ~20 m of the water column. The instruments were deployed under the ice, pointing downward on either side of a large ice ridge. In addition to currents, temperature, pressure, tilt, and compass direction were measured. Both instruments were eventually lost due to ice rafting, resulting in one time series between January 3rd and May 6th2020 and one between January 3rd and February 21st, 2020. Here we describe the instrument hardware, setup, and processing that resulted in the final data set. The instruments were deployed as part of the project Ridges - Safe HAVens for ice-associated Flora and Fauna in a Seasonally ice-covered Arctic OCean (HAVOC), funded by the Research Council of Norway, project number: 280292.
    Keywords: ADCP data; Arctic; Arctic Ocean; Binary Object; Binary Object (File Size); BUOY_ADCP; Buoy, acoustic doppler current profiler; currents; Event label; HAVOC; Mosaic; MOSAiC; MOSAIC_PO; MOSAiC20192020; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122/2; PS122/2_14-307; PS122/2_14-308; ridge flank; Ridges - Safe HAVens for ice-associated Flora and Fauna in a Seasonally ice-covered Arctic OCean; Sea ice; Turbulence
    Type: Dataset
    Format: text/tab-separated-values, 2 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-04-20
    Description: Two Nortek Signature1000 acoustic Doppler current profilers (SN 100098 & SN 101048) were deployed as part of the Sea Ice Ridge Observatory (also called Fort Ridge) in the Arctic Ocean during the 2nd leg of the MOSAiC ice drift expedition in February 2020. The ADCPs are autonomous instruments that measured ice-relative horizontal and vertical ocean currents and turbulence in the upper ~20 m of the water column. The instruments were deployed under the ice, pointing downward on either side of a large ice ridge. In addition to currents, temperature, pressure, tilt, and compass direction were measured. Both instruments were eventually lost due to ice rafting, resulting in one time series between January 3rd and May 6th 2020 and one between January 3rd and February 21st, 2020. This dataset contains the rawdata for adcp_101408. Nortek Signature software (Nortek Discover) is needed to read and convert the data (https://www.nortekgroup.com/software). For more information see the Nortek Signature Principles of Operation (https://www.nortekgroup.com/assets/software/N3015-011-SignaturePrinciples.pdf). A processed and temporally averaged version of this dataset together with a data report can be found under doi:10.1594/PANGAEA.941882.
    Keywords: ADCP data; Arctic; Arctic Ocean; BUOY_ADCP; Buoy, acoustic doppler current profiler; currents; HAVOC; Mosaic; MOSAiC; MOSAiC20192020; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122/2; PS122/2_14-307; ridge flank; Ridges - Safe HAVens for ice-associated Flora and Fauna in a Seasonally ice-covered Arctic OCean; Sea ice; Turbulence
    Type: Dataset
    Format: application/x-tar, 7.3 GBytes
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-04-20
    Description: Two Nortek Signature1000 acoustic Doppler current profilers (SN 100098 & SN 101048) were deployed as part of the Sea Ice Ridge Observatory (also called Fort Ridge) in the Arctic Ocean during the 2nd leg of the MOSAiC ice drift expedition in February 2020. The ADCPs are autonomous instruments that measured ice-relative horizontal and vertical ocean currents and turbulence in the upper ~20 m of the water column. The instruments were deployed under the ice, pointing downward on either side of a large ice ridge. In addition to currents, temperature, pressure, tilt, and compass direction were measured. Both instruments were eventually lost due to ice rafting, resulting in one time series between January 3rd and May 6th2020 and one between January 3rd and February 21st, 2020. This dataset contains the rawdata for adcp_100098. Nortek Signature software (Nortek Discover) is needed to read and convert the data (https://www.nortekgroup.com/software). For more information see the Nortek Signature Principles of Operation (https://www.nortekgroup.com/assets/software/N3015-011-SignaturePrinciples.pdf). A processed and temporally averaged version of this dataset together with a data report can be found under doi:10.1594/PANGAEA.941882.
    Keywords: ADCP data; Arctic; Arctic Ocean; BUOY_ADCP; Buoy, acoustic doppler current profiler; CTD data; currents; HAVOC; Mosaic; MOSAiC; MOSAiC20192020; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122/2; PS122/2_14-308; ridge flank; Ridges - Safe HAVens for ice-associated Flora and Fauna in a Seasonally ice-covered Arctic OCean; Sea ice; Turbulence
    Type: Dataset
    Format: application/x-tar, 16.8 GBytes
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-04-20
    Description: This data set contains the hydrographic profile data collected with a CTD rosette in a shelter on the ice (Ocean City) during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC). The CTD is an SBE911plus with 12 bottles, 5 liters each, operated with a small winch and crane in the shelter on the ice. The data set contains calibrated and quality-controlled parameters (temperature, conductivity, oxygen and their derived variables) as well as only pre-cruise calibrated parameters where no post-cruise calibration or quality control was applied (all other). CDOM fluorescence data are the exception. Quality control was performed but data have to be handled with care, as the sensor seems to have broken down during leg 3 such that no post-cruise calibration could be applied. The data are provided as text file (all cruise legs in one file) as well as in netCDF format (one file per cruise leg). The accuracy for salinity and conductivity is 0.004 while the accuracy for temperature is 0.002. Additional information on the sensor used for the final data set, the water depth as well as the availability of profile or bottle data is given in a separate info-text-file. Contact: Sandra.Tippenhauer@awi.de Quality flags are given based on paragraph 6. "Quality flags" from https://www.seadatanet.org/content/download/596/file/SeaDataNet_QC_procedures_V2_%28May_2010%29.pdf. QC flag meanings: 0 = unknown, 1 = good_data, 2 = probably good_data, 3 = probably bad data, 4 = bad data set to nan. This work was carried out and data was produced as part of the international Multidisciplinary drifting Observatory for the Study of the Arctic Climate (MOSAiC) with the tag MOSAiC20192020. We thank all persons involved in the expedition of the Research Vessel Polarstern during MOSAiC in 2019-2020 (AWI_PS122_00) as listed in Nixdorf et al. (2021).
    Keywords: Advective Pathways of nutrients and key Ecological substances in the ARctic; APEAR; Arctic Ocean; Attenuation, optical beam transmission; AWI_PhyOce; Chlorophyll a; Conductivity; CTD; CTD, Seabird; CTD, Sea-Bird, SBE 911plus; CTD, Sea-Bird, SBE 911plus, measured with Temperature sensor, Sea-Bird, SBE3plus; CTD, Sea-Bird, SBE 911plus; Calculation according to Bittig et al. (2018); CTD, Sea-Bird, SBE 911plus; Calculation according to McDougall and Barker (2011); CTD, Sea-Bird, SBE 911plus; measured with Conductivity sensor, Sea-Bird, SBE 4; CTD, Sea-Bird, SBE 911plus; measured with Dissolved oxygen sensor, Sea-Bird, SBE 43; CTD, Sea-Bird, SBE 911plus; measured with Fluorometer, Turner Designs, Cyclops-6k 2160-000-R; CTD, Sea-Bird, SBE 911plus; measured with Fluorometer, WET Labs, ECO FLRTD; CTD, Sea-Bird, SBE 911plus; measured with PAR sensor, Biospherical Instruments Inc., QCP2300-HP; CTD, Sea-Bird, SBE 911plus; measured with SPAR Sensor, Biospherical Instruments Inc., QCR2200; CTD, Sea-Bird, SBE 911plus; measured with Transmissometer, WET Labs, C-Star; CTD/Rosette; CTD-R; CTD-RO; DATE/TIME; Density, potential anomaly; DEPTH, water; Event label; Fluorescence, colored dissolved organic matter; HAVOC; LATITUDE; LONGITUDE; MOSAiC; MOSAIC_PO; MOSAiC20192020; MOSAiC expedition; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Oxygen; Oxygen, dissolved; Oxygen saturation; Physical Oceanography @ AWI; Polarstern; Pressure, water; PS122/1; PS122/1_10-129; PS122/1_10-14; PS122/1_10-26; PS122/1_10-33; PS122/1_10-45; PS122/1_11-17; PS122/1_11-24; PS122/1_11-40; PS122/1_4-37; PS122/1_5-40; PS122/1_5-46; PS122/1_5-59; PS122/1_5-8; PS122/1_6-122; PS122/1_6-17; PS122/1_6-18; PS122/1_6-38; PS122/1_7-15; PS122/1_7-40; PS122/1_7-41; PS122/1_7-96; PS122/1_8-16; PS122/1_8-18; PS122/1_9-113; PS122/1_9-28; PS122/1_9-36; PS122/1_9-37; PS122/1_9-46; PS122/1_9-47; PS122/1_9-48; PS122/1_99-78; PS122/1_99-79; PS122/1_99-81; PS122/1_99-82; PS122/2; PS122/2_16-54; PS122/2_16-64; PS122/2_16-94; PS122/2_17-18; PS122/2_17-78; PS122/2_17-8; PS122/2_18-16; PS122/2_18-25; PS122/2_18-81; PS122/2_18-91; PS122/2_19-123; PS122/2_19-18; PS122/2_19-4; PS122/2_19-42; PS122/2_19-89; PS122/2_20-109; PS122/2_20-17; PS122/2_20-2; PS122/2_20-33; PS122/2_21-1; PS122/2_21-101; PS122/2_21-114; PS122/2_21-128; PS122/2_21-26; PS122/2_22-18; PS122/2_22-3; PS122/2_22-49; PS122/2_22-71; PS122/2_23-17; PS122/2_23-4; PS122/2_23-70; PS122/2_24-47; PS122/2_25-26; PS122/2_25-4; PS122/2_99-83; PS122/2_99-84; PS122/2_99-85; PS122/3; PS122/3_29-74; PS122/3_29-8; PS122/3_30-38; PS122/3_30-9; PS122/3_31-18; PS122/3_31-81; PS122/3_32-12; PS122/3_32-75; PS122/3_32-77; PS122/3_33-69; PS122/3_33-71; PS122/3_33-80; PS122/3_33-82; PS122/3_34-17; PS122/3_34-38; PS122/3_34-65; PS122/3_34-67; PS122/3_34-76; PS122/3_34-77; PS122/3_35-25; PS122/3_35-60; PS122/3_35-62; PS122/3_35-63; PS122/3_35-77; PS122/3_35-92; PS122/3_36-115; PS122/3_36-17; PS122/3_36-19; PS122/3_36-59; PS122/3_36-81; PS122/3_36-83; PS122/3_36-85; PS122/3_37-116; PS122/3_37-14; PS122/3_37-15; PS122/3_37-45; PS122/3_37-46; PS122/3_37-88; PS122/3_38-100; PS122/3_38-31; PS122/3_38-5; PS122/3_38-54; PS122/3_38-55; PS122/3_38-69; PS122/3_39-16; PS122/3_39-51; PS122/3_39-52; PS122/3_39-54; PS122/3_39-69; PS122/3_39-70; PS122/3_39-82; PS122/3_99-87; Quality flag, attenuation; Quality flag, chlorophyll; Quality flag, conductivity; Quality flag, conservative water temperature; Quality flag, density; Quality flag, fluorescence, colored dissolved organic matter; Quality flag, irradiance; Quality flag, oxygen; Quality flag, rhodamine; Quality flag, salinity; Quality flag, surface irradiance; Quality flag, water temperature; Radiation, photosynthetically active; Radiation, photosynthetically active, surface; Rhodamine; Ridges - Safe HAVens for ice-associated Flora and Fauna in a Seasonally ice-covered Arctic OCean; Salinity; Salinity, absolute; Seadatanet flag: Data quality control procedures according to SeaDataNet (2010); Temperature, water; Temperature, water, conservative; Temperature, water, potential; WAOW; Why is the deep Arctic Ocean Warming?
    Type: Dataset
    Format: text/tab-separated-values, 1345775 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-04-20
    Description: This data set contains the hydrographic profile data collected with the ship based CTD rosette during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC). The CTD is an SBE911plus with 24 bottles, 12 liters each, operated with a winch and crane on the side of Polarstern. The data set contains calibrated and quality-controlled parameters (temperature, conductivity, oxygen and their derived variables) as well as only pre-cruise calibrated parameters where no post-cruise calibration or quality control was applied (all other). CDOM fluorescence data are the exception. Quality control was performed but data have to be handled with care, as the sensor seems to have broken down during leg 3 such that no post-cruise calibration could be applied. The data are provided as text file (all cruise legs in one file) as well as in netCDF format (one file per cruise leg). The accuracy for salinity and conductivity is 0.004 while the accuracy for temperature is 0.002. Additional information on the sensor used for the final data set, the water depth as well as the availability of profile or bottle data is given in a separate info-text-file. Contact: Sandra.Tippenhauer@awi.de. Quality flags are given based on paragraph 6. "Quality flags" from https://www.seadatanet.org/content/download/596/file/SeaDataNet_QC_procedures_V2_%28May_2010%29.pdf. QC flag meanings: 0 = unknown, 1 = good_data, 2 = probably good_data, 3 = probably bad data, 4 = bad data set to nan. This work was carried out and data was produced as part of the international Multidisciplinary drifting Observatory for the Study of the Arctic Climate (MOSAiC) with the tag MOSAiC20192020. We thank all persons involved in the expedition of the Research Vessel Polarstern during MOSAiC in 2019-2020 (AWI_PS122_00) as listed in Nixdorf et al. (2021).
    Keywords: Advective Pathways of nutrients and key Ecological substances in the ARctic; APEAR; Arctic Ocean; Attenuation, optical beam transmission; AWI_PhyOce; Chlorophyll a; Conductivity; CTD; CTD, Sea-Bird, SBE 911plus; CTD, Sea-Bird, SBE 911plus, measured with Temperature sensor, Sea-Bird, SBE3plus; CTD, Sea-Bird, SBE 911plus; Calculation according to Bittig et al. (2018); CTD, Sea-Bird, SBE 911plus; Calculation according to McDougall and Barker (2011); CTD, Sea-Bird, SBE 911plus; measured with Conductivity sensor, Sea-Bird, SBE 4; CTD, Sea-Bird, SBE 911plus; measured with Dissolved oxygen sensor, Sea-Bird, SBE 43; CTD, Sea-Bird, SBE 911plus; measured with Fluorometer, Turner Designs, Cyclops-6k 2160-000-R; CTD, Sea-Bird, SBE 911plus; measured with Fluorometer, WET Labs, ECO FLRTD; CTD, Sea-Bird, SBE 911plus; measured with PAR sensor, Biospherical Instruments Inc., QCP2300-HP; CTD, Sea-Bird, SBE 911plus; measured with SPAR Sensor, Biospherical Instruments Inc., QCR2200; CTD, Sea-Bird, SBE 911plus; measured with Transmissometer, WET Labs, C-Star; CTD/Rosette; CTD-RO; DATE/TIME; Density, potential anomaly; DEPTH, water; Event label; Fluorescence, colored dissolved organic matter; HAVOC; LATITUDE; LONGITUDE; MOSAiC; MOSAIC_PO; MOSAiC20192020; MOSAiC expedition; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Oxygen; Oxygen, dissolved; Oxygen saturation; Physical Oceanography @ AWI; Polarstern; Pressure, water; PS122/1; PS122/1_10-41; PS122/1_10-44; PS122/1_10-60; PS122/1_10-64; PS122/1_2-68; PS122/1_6-58; PS122/1_6-79; PS122/1_6-81; PS122/1_7-47; PS122/1_7-49; PS122/1_7-80; PS122/1_8-43; PS122/1_8-46; PS122/1_8-71; PS122/1_8-98; PS122/1_9-50; PS122/1_9-61; PS122/1_9-67; PS122/1_9-87; PS122/2; PS122/2_16-21; PS122/2_16-34; PS122/2_17-39; PS122/2_17-41; PS122/2_17-64; PS122/2_17-68; PS122/2_18-32; PS122/2_18-34; PS122/2_18-57; PS122/2_18-74; PS122/2_19-55; PS122/2_19-56; PS122/2_19-76; PS122/2_19-77; PS122/2_20-45; PS122/2_20-46; PS122/2_20-71; PS122/2_20-73; PS122/2_21-64; PS122/2_21-65; PS122/2_22-42; PS122/2_22-47; PS122/2_22-63; PS122/2_23-46; PS122/2_23-47; PS122/2_23-63; PS122/2_24-2; PS122/2_24-4; PS122/2_25-52; PS122/2_25-54; PS122/2_25-71; PS122/2_25-73; PS122/3; PS122/3_30-53; PS122/3_30-64; PS122/3_31-39; PS122/3_31-59; PS122/3_31-63; PS122/3_40-36; PS122/3_42-32; PS122/4; PS122/4_44-183; PS122/4_44-184; PS122/4_44-187; PS122/4_44-202; PS122/4_44-67; PS122/4_44-76; PS122/4_45-100; PS122/4_45-101; PS122/4_45-106; PS122/4_45-121; PS122/4_45-3; PS122/4_45-31; PS122/4_45-48; PS122/4_45-53; PS122/4_45-72; PS122/4_45-73; PS122/4_45-74; PS122/4_45-75; PS122/4_45-76; PS122/4_45-77; PS122/4_45-78; PS122/4_45-79; PS122/4_45-80; PS122/4_45-81; PS122/4_45-82; PS122/4_45-83; PS122/4_45-84; PS122/4_45-85; PS122/4_45-88; PS122/4_45-9; PS122/4_45-94; PS122/4_45-95; PS122/4_45-96; PS122/4_45-97; PS122/4_45-98; PS122/4_45-99; PS122/4_46-15; PS122/4_46-2; PS122/4_46-35; PS122/4_46-56; PS122/4_46-60; PS122/4_46-83; PS122/4_46-87; PS122/4_46-91; PS122/4_47-108; PS122/4_47-52; PS122/4_47-60; PS122/4_48-121; PS122/4_48-15; PS122/4_48-155; PS122/4_48-159; PS122/4_48-29; PS122/4_48-56; PS122/4_48-60; PS122/4_48-62; PS122/4_48-96; PS122/4_49-10; PS122/4_49-14; PS122/4_49-2; PS122/4_49-25; PS122/4_49-36; PS122/4_49-5; PS122/4_50-21; PS122/4_50-52; PS122/5; PS122/5_59-138; PS122/5_59-149; PS122/5_59-272; PS122/5_59-274; PS122/5_59-305; PS122/5_59-306; PS122/5_59-357; PS122/5_59-363; PS122/5_59-62; PS122/5_59-72; PS122/5_60-67; PS122/5_60-69; PS122/5_60-89; PS122/5_61-128; PS122/5_61-159; PS122/5_61-161; PS122/5_61-189; PS122/5_61-211; PS122/5_62-38; PS122/5_62-4; PS122/5_62-66; PS122/5_62-88; PS122/5_62-91; PS122/5_63-100; PS122/5_63-110; PS122/5_63-111; PS122/5_63-35; PS122/5_63-53; Quality flag, attenuation; Quality flag, chlorophyll; Quality flag, conductivity; Quality flag, conservative water temperature; Quality flag, density; Quality flag, fluorescence, colored dissolved organic matter; Quality flag, irradiance; Quality flag, oxygen; Quality flag, rhodamine; Quality flag, salinity; Quality flag, surface irradiance; Quality flag, water temperature; Radiation, photosynthetically active; Radiation, photosynthetically active, surface; Rhodamine; Ridges - Safe HAVens for ice-associated Flora and Fauna in a Seasonally ice-covered Arctic OCean; Salinity; Salinity, absolute; Seadatanet flag: Data quality control procedures according to SeaDataNet (2010); Temperature, water; Temperature, water, conservative; Temperature, water, potential; WAOW; Why is the deep Arctic Ocean Warming?
    Type: Dataset
    Format: text/tab-separated-values, 6733924 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-09-23
    Description: Tourism in Antarctica is increasing, with visitors mostly choosing ship cruises often advertised as “Last chance tourism” taking advantage of increasing climate change awareness. While the existing guidelines for tourist operators are designed to protect this fragile region, many aspects of the local fauna, such as animal distribution and behavior, are still largely unknown due to difficulties studying these species. Without supporting data, it is challenging to design effective measures that minimize negative impacts of cruise ships on the Antarctic environment. A potential negative impact is the anthropogenic underwater noise generated by the vessels visiting the areas. Marine mammals rely on sound for many purposes such as foraging, orientation and reproduction. Ship noise can therefore potentially affect critical life phases of these species. Here we present a case study investigating how vessel acoustic presence affects the vocal behavior and timing of acoustic presence of leopard seals (Hydrurga leptonyx, LS) and Ross seals (Ommatophoca rossii, RS). RS are one of the least studied Antarctic species. Both pinniped spe cies are known to mainly produce underwater sounds during the mating season, presumably to attract mating partners in pack-ice areas. The German research icebreaker Polarstern (PS) annually resupplies Neumayer Station III (NS) - the German Antarctic Research Facility. Its arrival at the pier where cargo is unloaded has been noted to coincide with the onset of pinniped vocal activity in this area. Here, we use passive acoustic data that were recorded close to the pier over a 5-year period to investigate and compare how seal vocal behavior and vocal activity relate to the timing of ship arrival, presence and departure. The seals’ behavior over the relatively short analysis period of 5 years was complex due to their natural calling variation within life phases (before, during and after mating season). Thus, interpretation was not always straightforward. The arrival timing of the PS had an effect on RS, which delayed their appearance in 2010 and 2011 coinciding with the anticipated arrival of the ice-breaker. However, once arrived, both species showed no avoidance behavior and calling times remained unchanged despite PS. LS and RS calling activity decreased significantly during PS presence, but tended to recover instantly post PS departure. It is therefore unlikely that the animals left the area completely and decrease in calling may instead be related to masking. However, further research is needed to further explore what caused the decrease in calling. Both LS and RS seemed to use higher frequency call types during PS presence. The seals’ arrival times are also affected by prevailing ice conditions and associated food distribution. LS arrival time differed within the 5 years, whereas the RS arrived slightly earlier each year. The marine soundscape planning approach was applied to explore how ship arrivals can be timed to minimize potential disturbances. Ship quietening techniques and reduced ship speeds can also contribute to reduced underwater noise levels. Lastly, stricter legislative measures are needed to regulate which regions during which periods can be used for tourism.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Thesis , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-09-29
    Description: The dynamics of the boundary layer of the ocean significantly affect the interaction between ocean and atmosphere and, as a result, global climate. The sub-ice boundary layer of the ocean and its dynamics have not been thoroughly studied because of the extremely difficult conditions for observation, in particular during winter. Current understanding of spatial-temporal variability of (sub)mesoscales of the upper Arctic Ocean is extremely limited. At the same time, one of the most important features of the upper ocean layers are the small-scale processes that influence and possibly determine the vertical and horizontal transport of heat, salt, and biologically relevant substances. As a consequence, mathematical models, in particular climate models, experience serious difficulties in parameterization of processes not resolved by the models because of the lack sufficient knowledge to detail the spatial variability at the (sub-)mesoscale. To a better characterization and understanding of (sub)mesoscale dynamics and its role in vertical transport of energy and mass we apply a 3D regional ocean model FESOM-C. The observed vertical hydrological structure and a corresponding reconstructed horizontal temperature and salinity fields were imposed as a part of the forcing for the numerical model. These fields and information about the vertical hydrological structure were utilized by the model as initial conditions and for constraining (nudging) during the spin-up period. After the initial spin-up period, once the model had adjusted to our initial conditions, we performed several free runs. We expect that our 3D numerical studies of eddy properties will contribute to a better characterisation and understanding of (sub)mesoscale dynamics in the Arctic Ocean and its role in the vertical transport of energy and mass.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...