GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-12-14
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉The collection of zooplankton swimmers and sinkers in time‐series sediment traps provides unique insight into year‐round and interannual trends in zooplankton population dynamics. These samples are particularly valuable in remote and difficult to access areas such as the Arctic Ocean, where samples from the ice‐covered season are rare. In the present study, we investigated zooplankton composition based on swimmers and sinkers collected by sediment traps at water depths of 180–280, 800–1320, and 2320–2550 m, over a period of 16 yr (2000–2016) at the Long‐Term Ecological Research observatory HAUSGARTEN located in the eastern Fram Strait (79°N, 4°E). The time‐series data showed seasonal and interannual trends within the dominant zooplankton groups including copepoda, foraminifera, ostracoda, amphipoda, pteropoda, and chaetognatha. Amphipoda and copepoda dominated the abundance of swimmers while pteropoda and foraminifera were the most important sinkers. Although the seasonal occurrence of these groups was relatively consistent between years, there were notable interannual variations in abundance, suggesting the influence of various environmental conditions such as sea‐ice dynamic and lateral advection of water masses, for example, meltwater and Atlantic water. Statistical analyses revealed a correlation between the Arctic dipole climatic index and sea‐ice dynamics (i.e., ice coverage and concentration), as well as the importance of the distance from the ice edge on swimmer composition patterns and carbon export.〈/p〉
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Federal Ministry of Education and Research (BMBF)
    Description: Helmholtz‐Gemeinschaft
    Keywords: ddc:577.7 ; eastern Fram Strait ; sea ice dynamics ; zooplankton population dynamics
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-03-29
    Description: Time-series studies of arctic marine ecosystems are rare. This is not surprising since polar regions arelargely only accessible by means of expensive modern infrastructure and instrumentation. In 1999, theAlfred Wegener Institute, Helmholtz-Centre for Polar and Marine Research (AWI) established the LTER(Long-Term Ecological Research) observatory HAUSGARTEN crossing the Fram Strait at about 79◦N.Multidisciplinary investigations covering all parts of the open-ocean ecosystem are carried out at a totalof 21 permanent sampling sites in water depths ranging between 250 and 5500 m. From the outset,repeated sampling in the water column and at the deep seafloor during regular expeditions in summermonths was complemented by continuous year-round sampling and sensing using autonomous instru-ments in anchored devices (i.e., moorings and free-falling systems). The central HAUSGARTEN stationat 2500 m water depth in the eastern Fram Strait serves as an experimental area for unique biologicalin situ experiments at the seafloor, simulating various scenarios in changing environmental settings.Long-term ecological research at the HAUSGARTEN observatory revealed a number of interesting tem-poral trends in numerous biological variables from the pelagic system to the deep seafloor. Contrary tocommon intuition, the entire ecosystem responded exceptionally fast to environmental changes in theupper water column. Major variations were associated with a Warm-Water-Anomaly evident in sur-face waters in eastern parts of the Fram Strait between 2005 and 2008. However, even after 15 years ofintense time-series work at HAUSGARTEN, we cannot yet predict with complete certainty whether thesetrends indicate lasting alterations due to anthropologically-induced global environmental changes of thesystem, or whether they reflect natural variability on multiyear time-scales, for example, in relation todecadal oscillatory atmospheric processes.
    Keywords: HAUSGARTEN; Arctic Ocean; Deep sea; Natural variability; Anthropogenic impact ; 551
    Language: English
    Type: article , publishedVersion
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-03-23
    Description: During most of the year, diatom production in the ice‐covered Central Arctic Ocean (CAO) is limited by light availability and nutrient supply. Therefore, biological production is thought to be generally low, with higher biological production at the sea ice edge and over partially ice‐free shelf areas. The major surface ocean current in the CAO is the Transpolar Drift (TPD), which transports sea ice and water from the rivers and shelves of the Laptev and the East Siberian Seas across the CAO toward the Fram Strait, carrying high amounts of terrestrial‐derived material over long distances. We used Si isotopes (δ30Si) to better understand the difference between lower and higher biological production areas and how the TPD potentially affects the Si cycle in the CAO. Our data show low dissolved Si concentrations ([DSi]) paired with high values of δ30Si‐DSi in all surface samples indicating fractionation by diatoms. Specifically, outside the TPD influence, all nutrients were depleted and supply was limited due to stratified conditions, thus preventing further phytoplankton growth in the area during the sampling time in late summer‐early fall. In contrast, under the TPD influence, diatom primary production was limited by low nitrate and strongly limited by light due to the presence of sea ice, even though [DSi] values were much higher than outside the TPD. Based on δ30Si, we could identify low but measurable DSi utilization in the TPD, potentially highlighting the importance of sea ice‐attached diatoms transported to the CAO via the TPD for the Si cycle in this region.
    Description: Plain Language Summary: The growth of siliceous microalgae (diatoms) in the ice‐covered Central Arctic Ocean (CAO) can be limited by light and nutrient availability. Due to the limiting conditions, diatom growth is considered to be generally low, with highest growth rates at the sea ice edge and over partially ice‐free coastal areas. The major surface water current in the CAO is the Transpolar Drift (TPD), carrying ice and water from rivers and coastal areas across the CAO to the major outflow area, the Fram Strait. We used silicon isotopes to better understand how the TPD potentially influences the silicon cycle in the CAO. Our data show that diatom growth was taking place in all areas studied here, despite different growth limiting factors outside and under the TPD influence. In the area outside the TPD influence, nutrient availability was very low and its supply was limited, which prevented further diatom growth. Under the TPD influence, even with additional nutrient supply from the TPD, only low diatom growth was observed, most likely limited by light availability.
    Description: Key Points: Primary production and silicon utilization outside the Transpolar Drift are higher than under its influence due to more light availability. Primary production and lateral water transport under the Transpolar Drift influence were identified from silicon isotope composition. The Transpolar Drift delivers high dissolved silicon to the surface Arctic Ocean, a unique feature not seen in any other open ocean.
    Description: MCTI, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) http://dx.doi.org/10.13039/501100003593
    Description: Deutsche Forschungsgemeinschaft (DFG) http://dx.doi.org/10.13039/501100001659
    Keywords: ddc:551.46
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...