GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Language
Years
  • 1
    Publication Date: 2023-12-14
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉The collection of zooplankton swimmers and sinkers in time‐series sediment traps provides unique insight into year‐round and interannual trends in zooplankton population dynamics. These samples are particularly valuable in remote and difficult to access areas such as the Arctic Ocean, where samples from the ice‐covered season are rare. In the present study, we investigated zooplankton composition based on swimmers and sinkers collected by sediment traps at water depths of 180–280, 800–1320, and 2320–2550 m, over a period of 16 yr (2000–2016) at the Long‐Term Ecological Research observatory HAUSGARTEN located in the eastern Fram Strait (79°N, 4°E). The time‐series data showed seasonal and interannual trends within the dominant zooplankton groups including copepoda, foraminifera, ostracoda, amphipoda, pteropoda, and chaetognatha. Amphipoda and copepoda dominated the abundance of swimmers while pteropoda and foraminifera were the most important sinkers. Although the seasonal occurrence of these groups was relatively consistent between years, there were notable interannual variations in abundance, suggesting the influence of various environmental conditions such as sea‐ice dynamic and lateral advection of water masses, for example, meltwater and Atlantic water. Statistical analyses revealed a correlation between the Arctic dipole climatic index and sea‐ice dynamics (i.e., ice coverage and concentration), as well as the importance of the distance from the ice edge on swimmer composition patterns and carbon export.〈/p〉
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Federal Ministry of Education and Research (BMBF)
    Description: Helmholtz‐Gemeinschaft
    Keywords: ddc:577.7 ; eastern Fram Strait ; sea ice dynamics ; zooplankton population dynamics
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-11-02
    Description: The by-collection of zooplankton swimmers in time-series sediment traps offers a unique insight into year-round and inter-annual trends in zooplankton population dynamics. These samples are especially valuable in remote and difficult to access areas such as the Arctic, where samples from the ice-covered winter season are rare. In the present study we investigate the year-round swimmer composition of sediment trap samples collected at water depths of 200-300 m over a period of 12 years (2000-2012) at the LTER (Long-Term Ecological Research) observatory HAUSGARTEN located in the northeastern Fram Strait (79? N, 4? E). Here we describe seasonal and inter-annual appearances within the dominant zooplankton groups including amphipods, chaetognaths, copepods, ostracods and pteropods. Amphipods and copepods made up the largest amount of the swimmer fraction. Although the seasonal occurrence of these groups was relatively consistent between years there were notable inter-annual variations in abundance that suggested the influence of different environmental conditions. In addition to these general patterns, specific changes were also detected. Notably, concerning pelagic amphipods, the occurrence of a southern invader Themisto compressa could be observed from 2004 onwards. Concurrent to this observation a reversal in dominance of the arctic pteropod species Limacina helicina towards the subarctic-boreal L. retroversa was noticed. In addition to a long-term trend in warming in eastern Fram Strait since 1997, a warm anomaly event was also observed during late 2004 to 2007. Whether these trends indicate lasting alterations due to global environmental change, or simply reflect natural variability on multiyear time-scales is presently unclear.
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-02-18
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: The collection of zooplankton swimmers and sinkers in time-series sediment traps provides unique insight into year-round and interannual trends in zooplankton population dynamics. These samples are particularly valuable in remote and difficult to access areas such as the Arctic Ocean, where samples from the ice-covered season are rare. In the present study, we investigated zooplankton composition based on swimmers and sinkers collected by sediment traps at water depths of 180–280, 800–1320, and 2320–2550 m, over a period of 16 yr (2000–2016) at the Long-Term Ecological Research observatory HAUSGARTEN located in the eastern Fram Strait (79°N, 4°E). The time-series data showed seasonal and interannual trends within the dominant zooplankton groups including copepoda, foraminifera, ostracoda, amphipoda, pteropoda, and chaetognatha. Amphipoda and copepoda dominated the abundance of swimmers while pteropoda and foraminifera were the most important sinkers. Although the seasonal occurrence of these groups was relatively consistent between years, there were notable interannual variations in abundance, suggesting the influence of various environmental conditions such as sea-ice dynamic and lateral advection of water masses, for example, meltwater and Atlantic water. Statistical analyses revealed a correlation between the Arctic dipole climatic index and sea-ice dynamics (i.e., ice coverage and concentration), as well as the importance of the distance from the ice edge on swimmer composition patterns and carbon export.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-17
    Description: The increasing CO2 concentration in the atmosphere caused by burning fossil fuels leads to increasing pCO2 and decreasing pH in the world ocean. These changes may have severe consequences for marine biota, especially in cold-water ecosystems due to higher solubility of CO2. However, studies on the response of mesozooplankton communities to elevated CO2 are still lacking. In order to test whether abundance and taxonomic composition change with pCO2, we have sampled nine mesocosms, which were deployed in Kongsfjorden, an Arctic fjord at Svalbard, and were adjusted to eight CO2 concentrations, initially ranging from 185 μatm to 1420 μatm. Vertical net hauls were taken weekly over about one month with an Apstein net (55 μm mesh size) in all mesocosms and the surrounding fjord. In addition, sediment trap samples, taken every second day in the mesocosms, were analysed to account for losses due to vertical migration and mortality. The taxonomic analysis revealed that meroplanktonic larvae (Cirripedia, Polychaeta, Bivalvia, Gastropoda and Decapoda) dominated in the mesocosms while copepods (Calanus spp., Oithona similis, Acartia longiremis and Microsetella norvegica) were found in lower abundances. In the fjord copepods prevailed for most of our study. With time, abundance and taxonomic composition developed similarly in all mesocosms and the pCO2 had no significant effect on the overall community structure. Also, we did not find significant relationships between the pCO2 level and the abundance of single taxa. Changes in heterogeneous communities are, however, difficult to detect, and the exposure to elevated pCO2 was relatively short. We therefore suggest that future mesocosm experiments should be run for longer periods.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-17
    Description: Pelagic amphipods represent a large fraction of organisms entering sediment traps as so-called “swimmers.” These swimmers were sampled with sediment traps (∼200– 300 m water depth) with two mooring arrays deployed at two different positions in the Long-Term Ecological Research observatory HAUSGARTEN in the northeastern Fram Strait. This sampling allowed us to investigate amphipod year-round abundances and inter-annual trends from 2000 onward. In this study, newly analyzed data from a 3-years period (August 2011–June 2014) are presented, extending this long-term investigation. In our results, the species Themisto abyssorum, T. libellula, and T. compressa dominated the swimmer biomass, corroborating previous studies. The observed increase of amphipod abundances persisted in all three species, additionally implying that Themisto compressa maintained its population off Svalbard, which appeared for the first time here after a warm anomaly in 2004–2007. This study provides evidence for changes in amphipod community patterns that can mainly be attributed to growing abundances of T. compressa. Similarly, another hyperiid, Lanceola clausii, also increased in abundance over the investigated period. For T. libellula, almost no juvenile individuals were recorded in the sampling period 2013/14, even though juveniles of this species were common in earlier records. The three more years of observations clearly suggest that recently documented environmental shifts persist in the eastern Fram Strait. They also highlight the merit of using sediment trap time series to obtain year-round data sets needed to reveal processes and range shift dynamics in the pelagic system on a long-term basis.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-06-19
    Description: The by-collection of zooplankton swimmers in time-series sediment traps offers a unique insight into year-round and inter-annual trends in zooplankton population dynamics. These samples are especially valuable in remote and difficult to access areas such as the Arctic, where samples from the ice-covered winter season are rare. In the present study we investigate the year-round swimmer composition of sediment trap samples collected at water depths of 200-300 m over a period of 12 years (2000-2012) at the LTER (Long-Term Ecological Research) observatory HAUSGARTEN located in the northeastern Fram Strait (79° N, 4° E). Here we describe seasonal and inter-annual appearances within the dominant zooplankton groups including amphipods, chaetognaths, copepods, ostracods and pteropods. Amphipods and copepods made up the largest amount of the swimmer fraction. Although the seasonal occurrence of these groups was relatively consistent between years there were notable inter-annual variations in abundance that suggested the influence of different environmental conditions. In addition to these general patterns, specific changes were also detected. Notably, concerning pelagic amphipods, the occurrence of a southern invader Themisto compressa could be observed from 2004 onwards. Concurrent to this observation a reversal in dominance of the arctic pteropod species Limacina helicina towards the subarctic-boreal L. retroversa was noticed. In addition to a long-term trend in warming in eastern Fram Strait since 1997, a warm anomaly event was also observed during late 2004 to 2007. Whether these trends indicate lasting alterations due to global environmental change, or simply reflect natural variability on multiyear time-scales is presently unclear.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-06-19
    Description: Amphipods are key species linking primary consumers such as copepods with higher trophic levels like marine mammals and sea birds. Studying Arctic pelagic amphipods in the Fram Strait region over a period of 15 years represents an outstanding opportunity in determining range shifts since only three species of the genus Themisto dominate the upper pelagic system of Fram Strait. Samples from sediment traps of the Long-Term-Ecological Research (LTER) observatory HAUSGARTEN in the northeastern Fram Strait (79°N, 4°C) have been used to obtain year-round abundance time series from the year 2000 until 2014. For this period range shifts in amphipods are evident:, the North-Atlantic species T. compressa was first observed in the samples in the eastern Fram Strait in 2004. It is further shown for recent years (2004 -2014) that this southern intruder got established in the Fram Strait. Also, the latest abundance development of the native species – the boreal T. abyssorum and the Arctic T. libellula – is described and related to environmental data such as marine current velocity, current direction, water temperature, and sea ice extend. Grouping patterns of yearly averaged amphipod abundances per mooring using multivariate statistics varied indicating a highly diverse system. Whether or not these dynamics are due to climate change or natural variability cannot yet be stated. A shift in the abundance pattern of Arctic amphipods will heavily impact marine food webs with implications up and down the food chain.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-06-21
    Description: The collection of zooplankton swimmers and sinkers in time-series sediment traps provides unique insight into year-round and interannual trends in zooplankton population dynamics. These samples are particularly valuable in remote and difficult to access areas such as the Arctic Ocean, where samples from the ice-covered season are rare. In the present study, we investigated zooplankton composition based on swimmers and sinkers collected by sediment traps at water depths of 180–280, 800–1320, and 2320–2550 m, over a period of 16 yr (2000–2016) at the Long-Term Ecological Research observatory HAUSGARTEN located in the eastern Fram Strait (79°N, 4°E). The time-series data showed seasonal and interannual trends within the dominant zooplankton groups including copepoda, foraminifera, ostracoda, amphipoda, pteropoda, and chaetognatha. Amphipoda and copepoda dominated the abundance of swimmers while pteropoda and foraminifera were the most important sinkers. Although the seasonal occurrence of these groups was relatively consistent between years, there were notable interannual variations in abundance, suggesting the influence of various environmental condi- tions such as sea-ice dynamic and lateral advection of water masses, for example, meltwater and Atlantic water. Statistical analyses revealed a correlation between the Arctic dipole climatic index and sea-ice dynamics (i.e., ice coverage and concentration), as well as the importance of the distance from the ice edge on swimmer composition patterns and carbon export.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...