GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Language
  • 1
    Publication Date: 2023-12-14
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉The collection of zooplankton swimmers and sinkers in time‐series sediment traps provides unique insight into year‐round and interannual trends in zooplankton population dynamics. These samples are particularly valuable in remote and difficult to access areas such as the Arctic Ocean, where samples from the ice‐covered season are rare. In the present study, we investigated zooplankton composition based on swimmers and sinkers collected by sediment traps at water depths of 180–280, 800–1320, and 2320–2550 m, over a period of 16 yr (2000–2016) at the Long‐Term Ecological Research observatory HAUSGARTEN located in the eastern Fram Strait (79°N, 4°E). The time‐series data showed seasonal and interannual trends within the dominant zooplankton groups including copepoda, foraminifera, ostracoda, amphipoda, pteropoda, and chaetognatha. Amphipoda and copepoda dominated the abundance of swimmers while pteropoda and foraminifera were the most important sinkers. Although the seasonal occurrence of these groups was relatively consistent between years, there were notable interannual variations in abundance, suggesting the influence of various environmental conditions such as sea‐ice dynamic and lateral advection of water masses, for example, meltwater and Atlantic water. Statistical analyses revealed a correlation between the Arctic dipole climatic index and sea‐ice dynamics (i.e., ice coverage and concentration), as well as the importance of the distance from the ice edge on swimmer composition patterns and carbon export.〈/p〉
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Federal Ministry of Education and Research (BMBF)
    Description: Helmholtz‐Gemeinschaft
    Keywords: ddc:577.7 ; eastern Fram Strait ; sea ice dynamics ; zooplankton population dynamics
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: The collection of zooplankton swimmers and sinkers in time-series sediment traps provides unique insight into year-round and interannual trends in zooplankton population dynamics. These samples are particularly valuable in remote and difficult to access areas such as the Arctic Ocean, where samples from the ice-covered season are rare. In the present study, we investigated zooplankton composition based on swimmers and sinkers collected by sediment traps at water depths of 180–280, 800–1320, and 2320–2550 m, over a period of 16 yr (2000–2016) at the Long-Term Ecological Research observatory HAUSGARTEN located in the eastern Fram Strait (79°N, 4°E). The time-series data showed seasonal and interannual trends within the dominant zooplankton groups including copepoda, foraminifera, ostracoda, amphipoda, pteropoda, and chaetognatha. Amphipoda and copepoda dominated the abundance of swimmers while pteropoda and foraminifera were the most important sinkers. Although the seasonal occurrence of these groups was relatively consistent between years, there were notable interannual variations in abundance, suggesting the influence of various environmental conditions such as sea-ice dynamic and lateral advection of water masses, for example, meltwater and Atlantic water. Statistical analyses revealed a correlation between the Arctic dipole climatic index and sea-ice dynamics (i.e., ice coverage and concentration), as well as the importance of the distance from the ice edge on swimmer composition patterns and carbon export.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-09-19
    Description: Eastern Boundary Upwelling Ecosystems (EBUEs) are associated with high biological productivity, high fish catch and they highly contribute to marine carbon sequestration. Whether coastal upwelling has intensified or weakened under climate change in the past decades is controversially discussed and different approaches (e.g., time-series of chlorophyll, wind, sea surface temperature, modeling experiments) have been considered. We present a record of almost two decades of particle fluxes (1991–2009) from ca. 600 to 3100 m water depth in the Canary Basin at site ESTOC (European Station for Time series in the Ocean Canary Islands; ca. 29°N, 15°30.W, ca. 3600 m water depth), located in the offshore transition zone of the northern Canary Current-EBUE. We compare these flux records with those measured at a mesotrophic sediment trap site further south off Cape Blanc (Mauritania, ca. 21°N). The deep ocean fluxes at ESTOC in ca. 3 km recorded the evolution of the coastal Cape Ghir filament (30–32°N, 10–12°W) due to lateral advection of particles, whereas the upper water column sediment traps in ca. 1 km reflected the oligotrophic conditions in the overlying waters of ESTOC. We observed an increased emphasis in spring-time fluxes since 2005, associated with a change in particle composition, while satellite chlorophyll biomass did not show this pattern. Due to its northern location in the CC-EBUEs, spring biogenic fluxes at ESTOC provide a better relationship to the forcing of the North Atlantic Oscillation than those recorded further south off Cape Blanc. Off Cape Blanc, deep fluxes showed the best overlap with the deep ESTOC fluxes during the spring season before 2005. On the long-term, both chlorophyll and particle fluxes showed an increasing trend at ESTOC which was not observed further south at the mesotrophic Cape Blanc site. This might indicate that, depending on their location along the NW African margin, coastal upwelling systems react differently to global change.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-04-10
    Description: The long-term dynamics of microbial communities across geographic, hydrographic, and biogeochemical gradients in the Arctic Ocean are largely unknown. To address this, we annually sampled polar, mixed, and Atlantic water masses of the Fram Strait (2015–2019; 5–100 m depth) to assess microbiome composition, substrate concentrations, and oceanographic parameters. Longitude and water depth were the major determinants (~30%) of microbial community variability. Bacterial alpha diversity was highest in lower-photic polar waters. Community composition shifted from west to east, with the prevalence of, for example, Dadabacteriales and Thiotrichales in Arctic- and Atlantic-influenced waters, respectively. Concentrations of dissolved organic carbon peaked in the western, compared to carbohydrates in the chlorophyll-maximum of eastern Fram Strait. Interannual differences due to the time of sampling, which varied between early (June 2016/2018) and late (September 2019) phytoplankton bloom stages, illustrated that phytoplankton composition and resulting availability of labile substrates influence bacterial dynamics. We identified 10 species clusters with stable environmental correlations, representing signature populations of distinct ecosystem states. In context with published metagenomic evidence, our microbial-biogeochemical inventory of a key Arctic region establishes a benchmark to assess ecosystem dynamics and the imprint of climate change.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-03-16
    Keywords: [GDGT-0]+[GDGT-1]+[GDGT-2]+[GDGT-3]+[GDGT-5]+[GDGT-5 reg-iso]; Acyclic glycerol dialkyl glycerol tetraether, fractional abundance; ARK-XXII/1c; Comment; Crenarchaeol, fractional abundance; Crenarchaeol regio-isomer, fractional abundance; Cruise/expedition; DATE/TIME; Date/time end; DEPTH, water; Dicyclic glycerol dialkyl glycerol tetraether, fractional abundance; Duration, number of days; FEVI16; Glycerol dialkyl glycerol tetraethers; High Performance Liquid Chromatography (HPLC-APCI-MS); Hydroxylated acyclic glycerol dialkyl glycerol tetraether, fractional abundance; Hydroxylated dicyclic glycerol dialkyl glycerol tetraether, fractional abundance; Hydroxylated monocyclic glycerol dialkyl glycerol tetraether, fractional abundance; Monocyclic glycerol dialkyl glycerol tetraether, fractional abundance; Mooring (long time); MOORY; North Greenland Sea; Polarstern; PS70; PS70/218-1, HGIV; Sample code/label; Tricyclic glycerol dialkyl glycerol tetraether, fractional abundance
    Type: Dataset
    Format: text/tab-separated-values, 247 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-03-16
    Keywords: [GDGT-0]+[GDGT-1]+[GDGT-2]+[GDGT-3]+[GDGT-5]+[GDGT-5 reg-iso]; Acyclic glycerol dialkyl glycerol tetraether, fractional abundance; Comment; Crenarchaeol, fractional abundance; Crenarchaeol regio-isomer, fractional abundance; Cruise/expedition; DATE/TIME; Date/time end; DEPTH, water; Dicyclic glycerol dialkyl glycerol tetraether, fractional abundance; Duration, number of days; Glycerol dialkyl glycerol tetraethers; High Performance Liquid Chromatography (HPLC-APCI-MS); Hydroxylated acyclic glycerol dialkyl glycerol tetraether, fractional abundance; Hydroxylated dicyclic glycerol dialkyl glycerol tetraether, fractional abundance; Hydroxylated monocyclic glycerol dialkyl glycerol tetraether, fractional abundance; Monocyclic glycerol dialkyl glycerol tetraether, fractional abundance; PF3_trap; Polar Front; Sample code/label; Trap, sediment; TRAPS; Tricyclic glycerol dialkyl glycerol tetraether, fractional abundance
    Type: Dataset
    Format: text/tab-separated-values, 438 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Park, Eunmi; Hefter, Jens; Fischer, Gerhard; Iversen, Morten Hvitfeldt; Ramondenc, Simon; Nöthig, Eva-Maria; Mollenhauer, Gesine (2019): Seasonality of archaeal lipid flux and GDGT-based thermometry in sinking particles of high-latitude oceans: Fram Strait (79° N) and Antarctic Polar Front (50° S). Biogeosciences, 16(11), 2247-2268, https://doi.org/10.5194/bg-16-2247-2019
    Publication Date: 2023-03-16
    Description: This is the temperature lipid proxy (GDGT) data measured in sinking particles collected using a sediment trap mooring system in the eastern Fram Strait and in the Antarctic Polar Front of the Atlantic sector. In the eastern Fram Strait (FEVI16), particles were collected at 1296 m water depth. In the Antarctic Polar Front (PF3), particles were collected at 614 m and 3196 m water depth. Using this dataset, TEX86-derived temperatures and OH-GDGTs-derived temperatures can be calculated.
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-02-02
    Description: The collection of zooplankton swimmers and sinkers in time-series sediment traps provides a unique insight into year-round and inter-annual trends in zooplankton population dynamics. Such samples are particularly valuable in remote and difficult to access areas such as the Arctic Ocean, where samples from the ice-covered seasons are rare. In the present study, we investigated zooplankton composition based on swimmers and sinkers collected by sediment traps at water depths of 180-280 m, 800-1320 m, and 2320-2550 m, over a period of 16 years (2000-2016) at the central station of the LTER (Long-Term Ecological Research) HAUSGARTEN observatory in the Fram Strait. The time-series data include the abundance of copepoda, foraminifera, ostracoda, amphipoda, pteropoda, and chaetognatha that were collected in the sediment trap time-series.
    Keywords: Amphipoda, flux; ARK-XVI/2; ARK-XVII/1; ARK-XVIII/1; ARK-XX/1; ARK-XXI/1b; ARK-XXII/1c; ARK-XXIII/2; ARK-XXIV/2; ARK-XXIX/2.2; ARK-XXV/2; ARK-XXVI/2; ARK-XXVII/2; ARK-XXVIII/2; Chaetognatha, flux; Copepoda, flux; DATE/TIME; DEPTH, water; Event label; FEVI1; FEVI10; FEVI13; FEVI16; FEVI18; FEVI2; FEVI20; FEVI22; FEVI24; FEVI26; FEVI28; FEVI3; FEVI30; FEVI32; FEVI7; Foraminifera, flux; FRAM; FRontiers in Arctic marine Monitoring; Hausgarten; HAUSGARTEN 2013; Latitude of event; Longitude of event; Long-term Investigation at AWI-Hausgarten off Svalbard; Maria S. Merian; Mooring (long time); MOORY; MSM02/4; MSM2/787-1, HGIV; MSM29; North Greenland Sea; Ostracoda, flux; Polarstern; Position; PS57; PS57/273-1, HGIV; PS59; PS59/101-1, HGIV; PS62; PS62/179-2, HGIV; PS66; PS66/129-1, HGIV; PS68; PS68/263-1, HGIV; PS70; PS70/218-1, HGIV; PS72; PS72/155-1, HGIV; PS74; PS74/125-2, HGIV; PS76; PS76/147-1, HGIV; PS78; PS78/177-1, HGIV; PS80; PS85; PS85/462-1, HGIV; PS93.2; Pteropoda, flux; sediment trap; Sediment trap; sinkers; swimmers; Zooplankton
    Type: Dataset
    Format: text/tab-separated-values, 3488 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-06-28
    Description: Sea ice in the Arctic Ocean (AO) has been undergoing dramatic changes during the last two decades. In addition, the water temperature of the inflow of Atlantic water masses at the gateway Fram Strait has recently increased. Long-term data may help to evaluate the impact of these physical changes on the biological processes in surface waters. Over a 25-year period, and mostly in summer, water samples were collected at discrete depths within the uppermost 100 m of the Fram Strait and other regions of the AO to investigate chlorophyll a (Chl a) and particulate organic carbon (POC) standing stocks. Stations sampled from 1991 to 2015 were located in the Fram Strait, Barents Sea (BS), on the Eurasian shelf, and over the Nansen, Amundsen, and parts of the Amerasian basins (AB). Discrete Chl a and POC measurements obtained during 33 and 24 expeditions, respectively, were integrated over the upper 100 m of the water column to monitor spatial and interannual variations in distribution patterns of standing stocks. In general, the highest Chl a and POC standing stocks were observed in the eastern Fram Strait (EFS) and in the BS, while the lowest biomasses were observed in the heavily ice-covered regions of the central AO, mainly in the Amundsen and ABs. Whereas summertime Chl a stocks sharply decreased northward from the Fram Strait and Barents Sea toward high latitudes, the decline in POC standing stocks was less pronounced. Over the sampling period, summertime Chl a stocks slightly increased in the EFS but remained more or less constant in the central AO. In contrast to Chl a, standing stocks of POC eventually increased over the last 25 years in the central AO, possibly as an effect of increasing air temperatures, decreasing sea ice extent and thickness, and increasing light availability. Moreover, variations in riverine discharge and in sea ice export within the Transpolar Drift may have contributed to the enhanced POC stock in the central AO surface waters. Overall, the objective of the present study was to provide baseline datasets of Chl a and POC to better track the effects of environmental changes due to global warming on the Arctic pelagic system.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-03-04
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...