GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • English  (3)
  • 1
    Publication Date: 2023-06-19
    Description: Residential assets, comprising buildings and household contents, are a major source of direct flood losses. Existing damage models are mostly deterministic and limited to particular countries or flood types. Here, we compile building-level losses from Germany, Italy and the Netherlands covering a wide range of fluvial and pluvial flood events. Utilizing a Bayesian network (BN) for continuous variables, we find that relative losses (i.e. loss relative to exposure) to building structure and its contents could be estimated with five variables: water depth, flow velocity, event return period, building usable floor space area and regional disposable income per capita. The model’s ability to predict flood losses is validated for the 11 flood events contained in the sample. Predictions for the German and Italian fluvial floods were better than for pluvial floods or the 1993 Meuse river flood. Further, a case study of a 2010 coastal flood in France is used to test the BN model’s performance for a type of flood not included in the survey dataset. Overall, the BN model achieved better results than any of 10 alternative damage models for reproducing average losses for the 2010 flood. An additional case study of a 2013 fluvial flood has also shown good performance of the model. The study shows that data from many flood events can be combined to derive most important factors driving flood losses across regions and time, and that resulting damage models could be applied in an open data framework.
    Description: EIT Climate-KIC http://dx.doi.org/10.13039/100013283
    Description: Horizon 2020 Framework Programme http://dx.doi.org/10.13039/100010661
    Description: Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum - GFZ (4217)
    Keywords: ddc:551.48 ; Fluvial floods ; Coastal floods ; Pluvial floods ; Bayesian networks ; Flood damage surveys
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-03-25
    Description: Large‐scale flood risk assessments are crucial for decision making, especially with respect to new flood defense schemes, adaptation planning and estimating insurance premiums. We apply the process‐based Regional Flood Model (RFM) to simulate a 5000‐year flood event catalog for all major catchments in Germany and derive risk curves based on the losses per economic sector. The RFM uses a continuous process simulation including a multisite, multivariate weather generator, a hydrological model considering heterogeneous catchment processes, a coupled 1D–2D hydrodynamic model considering dike overtopping and hinterland storage, spatially explicit sector‐wise exposure data and empirical multi‐variable loss models calibrated for Germany. For all components, uncertainties in the data and models are estimated. We estimate the median Expected Annual Damage (EAD) and Value at Risk at 99.5% confidence for Germany to be €0.529 bn and €8.865 bn, respectively. The commercial sector dominates by making about 60% of the total risk, followed by the residential sector. The agriculture sector gets affected by small return period floods and only contributes to less than 3% to the total risk. The overall EAD is comparable to other large‐scale estimates. However, the estimation of losses for specific return periods is substantially improved. The spatial consistency of the risk estimates avoids the large overestimation of losses for rare events that is common in other large‐scale assessments with homogeneous return periods. Thus, the process‐based, spatially consistent flood risk assessment by RFM is an important step forward and will serve as a benchmark for future German‐wide flood risk assessments.
    Description: Plain Language Summary: We provide spatially consistent flood risk estimates for the residential, commercial and agricultural sectors of Germany. The Regional Flood Model (RFM) simulates a 5000‐year flood event catalogue from which the flood risk curves are derived based on the losses per economic sector. The RFM is a process‐based model chain, that couples the weather generator providing spatially consistent precipitation fields with the hydrological and hydrodynamic models considering processes such as dike overtopping and hinterland storage. The coherent heterogeneous return period flows result in flood maps consisting of inundation depth and duration. These are intersected with sector specific assets at high spatial resolution. Detailed flood loss models are used to estimate losses. From the risk curves, we estimate the Expected Annual Damage and losses corresponding to a 200‐year return period for Germany to be €0.529 bn and €8.865 bn, respectively. The commercial sector dominates by making about 60% of the total risk, followed by the residential sector. The agriculture sector gets affected by small return period floods and only contributes to less than 3% to the total risk. Owing to the process‐based, spatially consistent approach implemented, our risk estimates for extreme events are more realistic compared to other large‐scale assessments.
    Description: Key Points: Regional Flood Model provides spatially consistent flood risk estimates for residential, commercial and agriculture sectors for Germany. Flood risk is derived using a 5000‐year event catalog, yielding a realistic representation of risk along with uncertainty quantification. The median Expected Annual Damage and Value At Risk at 99.5% confidence for Germany is estimated to be €0.53 bn and €8.87 bn, respectively.
    Description: Bundesministerium für Bildung und Forschung (BMBF) http://dx.doi.org/10.13039/501100002347
    Description: Deutsche Forschungsgemeinschaft (DFG) http://dx.doi.org/10.13039/501100001659
    Keywords: ddc:551.489
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-10-27
    Description: Forecasting and early warning systems are important investments to protect lives, properties, and livelihood. While early warning systems are frequently used to predict the magnitude, location, and timing of potentially damaging events, these systems rarely provide impact estimates, such as the expected amount and distribution of physical damage, human consequences, disruption of services, or financial loss. Complementing early warning systems with impact forecasts has a twofold advantage: It would provide decision makers with richer information to take informed decisions about emergency measures and focus the attention of different disciplines on a common target. This would allow capitalizing on synergies between different disciplines and boosting the development of multihazard early warning systems. This review discusses the state of the art in impact forecasting for a wide range of natural hazards. We outline the added value of impact-based warnings compared to hazard forecasting for the emergency phase, indicate challenges and pitfalls, and synthesize the review results across hazard types most relevant for Europe.
    Keywords: 550 ; impact forecasting ; natural hazards ; early warning
    Language: English
    Type: map
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...