GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
  • 2
    Publication Date: 2021-06-29
    Description: In this work, we present a comprehensive evaluation of a stochastic multi‐site, multi‐variate weather generator at the scale of entire Germany and parts of the neighbouring countries covering the major German river basins Elbe, Upper Danube, Rhine, Weser and Ems with a total area of approximately 580,000 km2. The regional weather generator, which is based on a first‐order multi‐variate auto‐regressive model, is setup using 53‐year long daily observational data at 528 locations. The performance is evaluated by investigating the ability of the weather generator to replicate various important statistical properties of the observed variables including precipitation occurrence and dry/wet transition probabilities, mean daily and extreme precipitation, multi‐day precipitation sums, spatial correlation structure, areal precipitation, mean daily and extreme temperature and solar radiation. We explore two marginal distributions for daily precipitation amount: mixed Gamma‐Generalized Pareto and extended Generalized Pareto. Furthermore, we introduce a new procedure to estimate the spatial correlation matrix and model mean daily temperature and solar radiation. The extensive evaluation reveals that the weather generator is greatly capable of capturing most of the crucial properties of the weather variables, particularly of extreme precipitation at individual locations. Some deficiencies are detected in capturing spatial precipitation correlation structure that leads to an overestimation of areal precipitation extremes. Further improvement of the spatial correlation structure is envisaged for future research. The mixed marginal model found to outperform the extended Generalized Pareto in our case. The use of power transformation in combination with normal distribution significantly improves the performance for non‐precipitation variables. The weather generator can be used to generate synthetic event footprints for large‐scale trans‐basin flood risk assessment.
    Description: The regional weather generator is greatly capable of capturing most of the crucial statistical properties of weather events. Hence, it can be used to generate synthetic event footprints for large‐scale trans‐basin flood risk assessment. However, due to its deficiency in capturing spatial precipitation correlation structure leading to an overestimation of areal precipitation extremes, further improvement is envisaged for future research.
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Keywords: 551.6 ; correlation ; extreme ; flood ; large‐scale ; multi‐variate ; weather generator
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-03-25
    Description: Large‐scale flood risk assessments are crucial for decision making, especially with respect to new flood defense schemes, adaptation planning and estimating insurance premiums. We apply the process‐based Regional Flood Model (RFM) to simulate a 5000‐year flood event catalog for all major catchments in Germany and derive risk curves based on the losses per economic sector. The RFM uses a continuous process simulation including a multisite, multivariate weather generator, a hydrological model considering heterogeneous catchment processes, a coupled 1D–2D hydrodynamic model considering dike overtopping and hinterland storage, spatially explicit sector‐wise exposure data and empirical multi‐variable loss models calibrated for Germany. For all components, uncertainties in the data and models are estimated. We estimate the median Expected Annual Damage (EAD) and Value at Risk at 99.5% confidence for Germany to be €0.529 bn and €8.865 bn, respectively. The commercial sector dominates by making about 60% of the total risk, followed by the residential sector. The agriculture sector gets affected by small return period floods and only contributes to less than 3% to the total risk. The overall EAD is comparable to other large‐scale estimates. However, the estimation of losses for specific return periods is substantially improved. The spatial consistency of the risk estimates avoids the large overestimation of losses for rare events that is common in other large‐scale assessments with homogeneous return periods. Thus, the process‐based, spatially consistent flood risk assessment by RFM is an important step forward and will serve as a benchmark for future German‐wide flood risk assessments.
    Description: Plain Language Summary: We provide spatially consistent flood risk estimates for the residential, commercial and agricultural sectors of Germany. The Regional Flood Model (RFM) simulates a 5000‐year flood event catalogue from which the flood risk curves are derived based on the losses per economic sector. The RFM is a process‐based model chain, that couples the weather generator providing spatially consistent precipitation fields with the hydrological and hydrodynamic models considering processes such as dike overtopping and hinterland storage. The coherent heterogeneous return period flows result in flood maps consisting of inundation depth and duration. These are intersected with sector specific assets at high spatial resolution. Detailed flood loss models are used to estimate losses. From the risk curves, we estimate the Expected Annual Damage and losses corresponding to a 200‐year return period for Germany to be €0.529 bn and €8.865 bn, respectively. The commercial sector dominates by making about 60% of the total risk, followed by the residential sector. The agriculture sector gets affected by small return period floods and only contributes to less than 3% to the total risk. Owing to the process‐based, spatially consistent approach implemented, our risk estimates for extreme events are more realistic compared to other large‐scale assessments.
    Description: Key Points: Regional Flood Model provides spatially consistent flood risk estimates for residential, commercial and agriculture sectors for Germany. Flood risk is derived using a 5000‐year event catalog, yielding a realistic representation of risk along with uncertainty quantification. The median Expected Annual Damage and Value At Risk at 99.5% confidence for Germany is estimated to be €0.53 bn and €8.87 bn, respectively.
    Description: Bundesministerium für Bildung und Forschung (BMBF) http://dx.doi.org/10.13039/501100002347
    Description: Deutsche Forschungsgemeinschaft (DFG) http://dx.doi.org/10.13039/501100001659
    Keywords: ddc:551.489
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-09-27
    Description: The magnitudes of river floods in Europe have been observed to change, but their alignment with changes in the spatial coverage or extent of individual floods has not been clear. We analyze flood magnitudes and extents for 3,872 hydrometric stations across Europe over the past five decades and classify each flood based on antecedent weather conditions. We find positive correlations between flood magnitudes and extents for 95% of the stations. In central Europe and the British Isles, the association of increasing trends in magnitudes and extents is due to a magnitude-extent correlation of precipitation and soil moisture along with a shift in the flood generating processes. The alignment of trends in flood magnitudes and extents highlights the increasing importance of transnational flood risk management.
    Keywords: 551.48 ; flood ; synchrony ; magnitude ; climate change ; classification ; spatial statistics
    Language: English
    Type: map
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-09-02
    Description: Risk management has reduced vulnerability to floods and droughts globally, yet their impacts are still increasing. An improved understanding of the causes of changing impacts is therefore needed, but has been hampered by a lack of empirical data. On the basis of a global dataset of 45 pairs of events that occurred within the same area, we show that risk management generally reduces the impacts of floods and droughts but faces difficulties in reducing the impacts of unprecedented events of a magnitude not previously experienced. If the second event was much more hazardous than the first, its impact was almost always higher. This is because management was not designed to deal with such extreme events: for example, they exceeded the design levels of levees and reservoirs. In two success stories, the impact of the second, more hazardous, event was lower, as a result of improved risk management governance and high investment in integrated management. The observed difficulty of managing unprecedented events is alarming, given that more extreme hydrological events are projected owing to climate change.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-06-10
    Description: Single-type hazard and risk assessment is the usual framework followed by disaster risk reduction (DRR) practitioners. There is therefore a need to present and compare the results arising from different hazard and risk types. Here we describe a simple method for combining risk curves arising from different hazard types in order to gain a first impression of the total risk. We show how the resulting total (and individual) risk estimates can be examined and compared using so-called risk matrices, a format preferred by some DRR practitioners. We apply this approach to Cologne, Germany, which is subject to floods, windstorms and earthquakes. We then use a new series of risk calculations that consider epistemic uncertainty. The Mann-Whitney test is applied to determine if the losses arising from pairs of hazards are comparable for a given return period. This benefits decision makers as it allows a ranking of hazards with respect to expected damage. Such a comparison would assist planners in the allocation of resources towards the most efficient mitigation actions. However, the results are dependent upon the distribution of estimates (i.e., level of uncertainty), which is in turn a function of our state of knowledge.
    Description: Published
    Description: S0216
    Description: 7SR AMBIENTE – Servizi e ricerca per la società
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-04-22
    Description: As the adverse impacts of hydrological extremes increase in many regions of the world, a better understanding of the drivers of changes in risk and impacts is essential for effective flood and drought risk management and climate adaptation. However, there is currently a lack of comprehensive, empirical data about the processes, interactions, and feedbacks in complex human-water systems leading to flood and drought impacts. Here we present a benchmark dataset containing socio-hydrological data of paired events, i.e. two floods or two droughts that occurred in the same area. The 45 paired events occurred in 42 different study areas and cover a wide range of socio-economic and hydro-climatic conditions. The dataset is unique in covering both floods and droughts, in the number of cases assessed and in the quantity of socio-hydrological data. The benchmark dataset comprises (1) detailed review-style reports about the events and key processes between the two events of a pair; (2) the key data table containing variables that assess the indicators which characterize management shortcomings, hazard, exposure, vulnerability, and impacts of all events; and (3) a table of the indicators of change that indicate the differences between the first and second event of a pair. The advantages of the dataset are that it enables comparative analyses across all the paired events based on the indicators of change and allows for detailed context- and location-specific assessments based on the extensive data and reports of the individual study areas. The dataset can be used by the scientific community for exploratory data analyses, e.g. focused on causal links between risk management; changes in hazard, exposure and vulnerability; and flood or drought impacts. The data can also be used for the development, calibration, and validation of socio-hydrological models. The dataset is available to the public through the GFZ Data Services (Kreibich et al., 2023, 10.5880/GFZ.4.4.2023.001).
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...