GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillian Magazines Ltd.
    Nature 427 (2004), S. 142-144 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Palaeoceanographic data have been used to suggest that methane hydrates play a significant role in global climate change. The mechanism by which methane is released during periods of global warming is, however, poorly understood. In particular, the size and role of the free-gas zone below ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-06-22
    Description: The transformation of smectite-group clay minerals to illite has garnered considerable interest as a potentially important process affecting both the mechanical and hydrologic behavior of subduction zones. Illitization can generate fluid overpressure by release of bound water, and the mineralogical change and associated cementation may increase intrinsic frictional strength while decreasing the sliding stability of faults. Released bound water also contributes to pore water freshening observed in boreholes at numerous margins. Here the authors combine data from Ocean Drilling Program drill sites along two transects at the Nankai subduction zone with numerical models of smectite transformation, to (i) quantify the distribution of smectite transformation and fluid production downdip of the trench; and (ii) evaluate its hydrologic and mechanical implications. High heat flow (ca 180 mW/m2) along the axis of the Kinan Seamount Chain (Muroto transect) initiates clay mineral transformation outboard of the trench, whereas lower heat flow (70–120 mW/m2) 100 km to the SW (Ashizuri transect) results in negligible presubduction diagenesis. As a result, considerably more bound fluid is subducted along the Ashizuri transect; simulated peak fluid sources down-dip of the trench are considerably higher than for the Muroto transect (ca 1.2–1.3 × 10−14/s vs ca 6 × 10−15/s), and are shifted ca 10 km further from the trench. More generally, sensitivity analysis illustrates that heat flow, taper angle, incoming sediment thickness, and plate convergence rate all systematically affect reaction progress and the distribution of bound water release down-dip of the trench. These shifts in the loci and volume of fluid release are important for constraining fluid flow pathways, and provide insight into the links between clay transformation and fault mechanics.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-12-23
    Description: Slow slip events (SSEs) at the northern Hikurangi subduction margin, New Zealand, are among the best-documented shallow SSEs on Earth. International Ocean Discovery Program Expedition 375 was undertaken to investigate the processes and in situ conditions that underlie subduction zone SSEs at the northern Hikurangi Trough by (1) coring at four sites, including an active fault near the deformation front, the upper plate above the high-slip SSE sourc e region, and the incoming sedimentary succession in the Hikurangi Trough and atop the Tūranganui Knoll Seamount, and (2) installing borehole observatories in an active thrust near the deformation front and in the upper plate overlying the slow slip source region. Logging-while-drilling (LWD) data for this project were acquired as part of Expedition 372 (26 November 2017-4 January 2018; see th e Expedition 372 Preliminary Report for further details on the LWD acquisition program). Northern Hikurangi subduction margin SSEs recur every 1-2 years and thus provide an ideal opportunity to monitor deformation and associated changes in chemical and physical properties throughout the slow slip cycle. Sampling of material from the sedimentary section and oceanic basement of the subducting plate reveals the rock properties, composition, lithology, and structural character of material that is transported downdip into the SSE source region. A recent seafloor geodetic experiment raises the possibility that SSEs at northern Hikurangi may propagate all the way to the trench, indicating that the shallow thrust fault zone targeted during Expedition 375 may also lie in the SSE rupture area. Hence, sampling at this location provides insights into the composition, physical properties, and architecture of a shallow fault that may host slow slip. Expedition 375 (together with the Hikurangi subduction LWD component of Expedition 372) was designed to address three fundamental scientific objectives: (1) characterize the state and composition of the incoming plate and shallow plate boundary fault near the trench, which comprise the protolith and initial conditions for fault zone rock at greater depth and which may itself host shallow slow slip; (2) characterize material properties, thermal regime, and stress conditions in the upper plate above the core of the SSE source region; and (3) install observatories at an active thrust near the deformation front and in the upper plate above the SSE source to measure temporal variations in deformation, temperature, and fluid flow. The observatories will monitor volumetric strain (via pore pressure as a proxy) and the evolution of physical, hydrological, and chemical properties throughout the SSE cycle. Together, the coring, logging, and observatory data will test a suite of hypotheses about the fundamental mechanics and behavior of SSEs and their relationship to great earthquakes along the subduction interface.
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-07-31
    Description: The Kumano fore-arc basin overlies the Nankai accretionary prism, formed by the subduction of the Philippine Sea Plate beneath the Eurasian plate offshore the Kii Peninsula, SW Honshu, Japan. Seismic surveys and boreholes within the framework of the Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) project show evidence of gas hydrates and free gas within the basin. Here we use high-quality borehole sonic data from Integrated Oceanic Drilling Program (IODP) Site C0009 to quantify the free gas distribution in the landward part of the basin. The Brie theory is used to quantify gas content from sonic logs, which are calibrated from laboratory measurements on drill cores. First, we show that the sonic data are mainly sensitive to the fluid phase filling the intergranular pores (effective porosity), rather than to the total porosity that includes water bound to clay minerals. We then compare the effective porosity to lithodensity-derived porosity that acts as a proxy for total porosity. The combination of these two data sets also allows assessment of clay mineralogy of the sediments. Second, we compute free gas saturation and find a gas-rich interval that is restricted to a lithological unit characterized by a high abundance of wood fragments and lignite. This unit, at the base of the fore-arc basin, is a hydrocarbon source that should be taken into account in models explaining gas distribution and the formation of the bottom-simulating reflector within the Kumano fore-arc basin.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-28
    Description: A 1.6 km riser borehole was drilled at site C0009 of the NanTroSEIZE, in the center of the Kumano forearc basin, as a landward extension of previous drilling in the southwest Japan Nankai subduction zone. We determined principal horizontal stress orientations from analyses of borehole breakouts and drilling-induced tensile fractures by using wireline logging formation microresistivity images and caliper data. The maximum horizontal stress orientation at C0009 is approximately parallel to the convergence vector between the Philippine Sea plate and Japan, showing a slight difference with the stress orientation which is perpendicular to the plate boundary at previous NanTroSEIZE sites C0001, C0004 and C0006 but orthogonal to the stress orientation at site C0002, which is also in the Kumano forearc basin. These data show that horizontal stress orientations are not uniform in the forearc basin within the surveyed depth range and suggest that oblique plate motion is being partitioned into strike-slip and thrusting. In addition, the stress orientations at site C0009 rotate clockwise from basin sediments into the underlying accretionary prism.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-02-08
    Description: Slow slip events (SSEs) accommodate a significant proportion of tectonic plate motion at subduction zones, yet little is known about the faults that actually host them. The shallow depth (〈2 km) of well-documented SSEs at the Hikurangi subduction zone offshore New Zealand offers a unique opportunity to link geophysical imaging of the subduction zone with direct access to incoming material that represents the megathrust fault rocks hosting slow slip. Two recent International Ocean Discovery Program Expeditions sampled this incoming material before it is entrained immediately down-dip along the shallow plate interface. Drilling results, tied to regional seismic reflection images, reveal heterogeneous lithologies with highly variable physical properties entering the SSE source region. These observations suggest that SSEs and associated slow earthquake phenomena are promoted by lithological, mechanical, and frictional heterogeneity within the fault zone, enhanced by geometric complexity associated with subduction of rough crust.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-02-15
    Description: The Hikurangi Subduction Margin was the recent focus of two IODP expeditions seeking to explore the cause and effect of slow slip earthquake generation at this plate boundary. Characterising the stress field across the Hikurangi Subduction Margin is a crucial element of to understanding the relationship between the contemporary in-situ stress state, active and inactive structures along the subduction front, and fluid pressures and the observed spatial variation in subduction behaviour. Existing stress observations rely on earthquake focal mechanisms and limited onshore borehole data from industry wells on the overriding plate. Reported pore pressures within the over-riding plate are often close to vertical stress magnitudes at shallow depths. Variability of in-situ stress orientations occur along strike of the subduction trench, with a subduction trench parallel SHmax in the south transitioning to a plate motion parallel, trench-oblique SHmax further north. This spatially correlates with observed changes in subduction interface coupling and earthquake behaviour. Here we present new stress field orientation data acquired from resistivity image logging carried out in IODP Expedition 372 using the logging while drilling GeoVision Resistivity tool. We report Shmin orientations from borehole breakout observations of N-S at Site U1518 near the deformation front, and NW-SE from Site U1519 within the upper plate. These data represent the first estimates of stress field orientation (from drilling data) in the outer forarc, near the deformation front of the Hikurangi Margin, an area characterised by shallow slow slip.
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-02-14
    Description: Glacio-eustatic cycles lead to changes in sedimentation on all types of continental margins. There is, however, a paucity of sedimentation rate data over eustatic sea-level cycles in active subduction zones. During International Ocean Discovery Program Expedition 375, coring of the upper ∼110 m of the northern Hikurangi Trough Site U1520 recovered a turbidite-dominated succession deposited during the last ∼45 kyrs (Marine Isotope Stages (MIS) 1–3). We present an age model integrating radiocarbon dates, tephrochronology, and δ18O stratigraphy, to evaluate the bed recurrence interval (RI) and sediment accumulation rate (SAR). Our analyses indicate mean bed RI varies from ∼322 yrs in MIS1, ∼49 yrs in MIS2, and ∼231 yrs in MIS3. Large (6-fold) and abrupt variations in SAR are recorded across MIS transitions, with rates of up to ∼10 m/kyr occurring during the Last Glacial Maximum (LGM), and 〈1 m/kyr during MIS1 and 3. The pronounced variability in SAR, with extremely high rates during the LGM, even for a subduction zone, are the result of changes in regional sediment supply associated with climate-driven changes in terrestrial catchment erosion, and critical thresholds of eustatic sea-level change altering the degree of sediment bypassing the continental shelf and slope via submarine canyon systems.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-01-01
    Description: A fundamental problem in fault mechanics is whether slip instability associated with earthquake nucleation depends on absolute fault strength. We present laboratory experimental evidence for a systematic relationship between frictional strength and friction rate dependence, one of the key parameters controlling stability, for a wide range of constituent minerals relevant to natural faults. All of the frictionally weak gouges (coefficient of sliding friction, {micro} 〈 0.5) are composed of phyllosilicate minerals and exhibit increased friction with slip velocity, known as velocity-strengthening behavior, which suppresses frictional instability. In contrast, fault gouges with higher frictional strength exhibit both velocity-weakening and velocity-strengthening frictional behavior. These materials are dominantly quartzofeldspathic in composition, but in some cases include certain phyllosilicate-rich gouges with high friction coefficients. We also find that frictional velocity dependence evolves systematically with shear strain, such that a critical shear strain is required to allow slip instability. As applied to tectonic faults, our results suggest that seismic behavior and the mode of fault slip may evolve predictably as a function of accumulated offset.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: McKiernan, Alexander W; Saffer, Demian M (2006): Data report: Permeability and consolidation properties of subducting sediments off Costa Rica, ODP Leg 205. In: Morris, JD; Villinger, HW; Klaus, A (eds.) Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 205, 1-24, https://doi.org/10.2973/odp.proc.sr.205.203.2006
    Publication Date: 2024-02-10
    Description: Vertical permeability and sediment consolidation measurements were taken on seven whole-round drill cores from Sites 1253 (three samples), 1254 (one sample), and 1255 (three samples) drilled during Ocean Drilling Program Leg 205 in the Middle America Trench off of Costa Rica's Pacific Coast. Consolidation behavior including slopes of elastic rebound and virgin compression curves (Cc) was measured by constant rate of strain tests. Permeabilities were determined from flow-through experiments during stepped-load tests and by using coefficient of consolidation (Cv) values continuously while loading. Consolidation curves and the Casagrande method were used to determine maximum preconsolidation stress. Elastic slopes of consolidation curves ranged from 0.097 to 0.158 in pelagic sediments and 0.0075 to 0.018 in hemipelagic sediments. Cc values ranged from 1.225 to 1.427 for pelagic carbonates and 0.504 to 0.826 for hemipelagic clay-rich sediments. In samples consolidated to an axial stress of ~20 MPa, permeabilities determined by flow-through experiments ranged from a low value of 7.66 x 10**-20 m**2 in hemipelagic sediments to a maximum value of 1.03 x 10**-16 m**2 in pelagic sediments. Permeabilities calculated from Cv values in the hemipelagic sediments ranged from 4.81 x 10**-16 to 7.66 x 10**-20 m**2 for porosities 49.9%-26.1%.
    Keywords: 205-1253A; 205-1254A; 205-1255A; DRILL; Drilling/drill rig; Joides Resolution; Leg205; North Pacific Ocean; Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...