GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Language
  • 1
    Keywords: DVD-ROM ; Nankai-Tiefseegraben ; Ocean Drilling Program
    Type of Medium: Electronic Resource
    Pages: 1 DVD , 12 cm
    Series Statement: Proceedings of the integrated ocean drilling program 314/315/316
    Language: English
    Note: Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE)
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-11-12
    Description: The study investigates the in-situ strength of sediments across a plate boundary décollement using drilling parameters recorded when a 1180-m-deep borehole was established during International Ocean Discovery Program (IODP)Expedition 370, Temperature-Limit of the Deep Biosphere off Muroto (T-Limit). Information of the in-situ strength of the shallow portion in/around a plate boundary fault zone is critical for understanding the development of accretionary prisms and of the décollement itself. Studies using seismic reflection surveys and scientific ocean drillings have recently revealed the existence of high pore pressure zones around frontal accretionary prisms, which may reduce the effective strength of the sediments. A direct measurement of in-situ strength by experiments, however, has not been executed due to the difficulty in estimating in-situ stress conditions. In this study, we derived a depth profile for the in-situ strength of a frontal accretionary prism across a décollement from drilling parameters using the recently established equivalent strength (EST) method. At site C0023, the toe of the accretionary prism area off Cape Muroto, Japan, the EST gradually increases with depth but undergoes a sudden change at ~ 800 mbsf, corresponding to the top of the subducting sediment. At this depth, directly below the décollement zone, the EST decreases from ~ 10 to 2 MPa, with a change in the baseline. This mechanically weak zone in the subducting sediments extends over 250 m (~ 800–1050 mbsf), corresponding to the zone where the fluid influx was discovered, and high-fluid pressure was suggested by previous seismic imaging observations. Although the origin of the fluids or absolute values of the strength remain unclear, our investigations support previous studies suggesting that elevated pore pressure beneath the décollement weakens the subducting sediments.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-12-04
    Description: Microorganisms in marine subsurface sediments substantially contribute to global biomass.Sediments warmer than 40°C account for roughly half the marine sediment volume, but theprocesses mediated by microbial populations in these hard-to-access environments are poorlyunderstood. We investigated microbial life in up to 1.2-kilometer-deep and up to 120°C hotsediments in the Nankai Trough subduction zone. Above 45°C, concentrations of vegetativecells drop two orders of magnitude and endospores become more than 6000 times more abundantthan vegetative cells. Methane is biologically produced and oxidized until sediments reach 80°to 85°C. In 100° to 120°C sediments, isotopic evidence and increased cell concentrationsdemonstrate the activity of acetate-degrading hyperthermophiles. Above 45°C, populated zonesalternate with zones up to 192 meters thick where microbes were undetectable
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-07-31
    Description: International Ocean Discovery Program (IODP) Expedition 370 aimed to explore the limits of life in the deep subseafloor biosphere at a location where temperature increases with depth at an intermediate rate and exceeds the known temperature maximum of microbial life (~120°C) at the sediment/basement interface ~1.2 km below the seafloor. Drilling Site C0023 is located in the vicinity of Ocean Drilling Program (ODP) Sites 808 and 1174 at the protothrust zone in the Nankai Trough off Cape Muroto at a water depth of 4776 m. ODP Leg 190 in 2000, revealed the presence of microbial cells at Site 1174 to a depth of ~600 meters below seafloor (mbsf), which corresponds to an estimated temperature of ~70°C, and reliably identified a single zone of higher cell concentrations just above the décollement at around 800 mbsf, where temperature presumably reached 90°C; no cell count data was reported for other sediment layers in the 70°–120°C range, because the limit of manual cell count for low-biomass samples was not high enough. With the establishment of Site C0023, we aimed to detect and investigate the presence or absence of life and biological processes at the biotic–abiotic transition with unprecedented analytical sensitivity and precision. Expedition 370 was the first expedition dedicated to subseafloor microbiology that achieved time-critical processing and analyses of deep biosphere samples by simultaneous shipboard and shore-based investigations. Our primary objectives during Expedition 370 were to study the relationship between the deep subseafloor biosphere and temperature. We aimed to comprehensively study the factors that control biomass, activity, and diversity of microbial communities in a subseafloor environment where temperatures increase from ~2°C at the seafloor to ~120°C at the sediment/basement interface and thus likely encompasses the biotic–abiotic transition zone. We also aimed to determine geochemical, geophysical, and hydrogeological characteristics in sediment and the underlying basaltic basement and elucidate if the supply of fluids containing thermogenic and/or geogenic nutrient and energy substrates may support subseafloor microbial communities in the Nankai accretionary complex. To address these primary scientific objectives and questions, we penetrated 1180 m and recovered 112 cores across the sediment/basalt interface. More than 13,000 samples were collected, and selected samples were transferred to the Kochi Core Center by helicopter for simultaneous microbiological sampling and analysis in laboratories with a super-clean environment. Following the coring operations, a temperature observatory with 13 thermistor sensors was installed in the borehole to 863 mbsf.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Miscellaneous , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2003. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 108, B9 (2003): 2434, doi:10.1029/2001JB000703.
    Description: From August 1994 to March 1995, three 50-m-high vertical thermistor arrays designated “Giant Kelps” (GKs) were deployed around the central black smoker complex (CBC) at the TAG hydrothermal mound, Mid-Atlantic Ridge (26°08primeN, 44°49primeW). These were designed to monitor the temporal variability of the vertical temperature distribution in the hydrothermal plume. One small high-temperature probe “Hobo” was also deployed in one of the black smoker vents of CBC. Over the observation period, two typical characteristics are recognized in plume temperatures measured with GKs: (1) the amplitudes of temperature anomalies decrease with increasing height above the top of CBC; (2) maximum temperature anomalies on the upper thermistors occurred periodically and nearly simultaneously across the array about every 6 hours. Conversely, maximum temperature anomalies on the lower thermistors occurred periodically every 12 hours, indicating that the location of the plume discharged from CBC was forcibly moved by the change in direction of tidally modulated current flow. The heat flux from CBC was estimated from temperatures measured by GKs based on a model of buoyant hydrothermal fluid rising in a stable, stratified density environment. The estimated heat flux from CBC gradually decreases from about 86 to 55 MW over the ~7 months of measurement, with a mean rate of decrease of 0.17 MW d-1. Since the black smoker effluent temperature measured with Hobo was almost stable over the measurement period, a plausible cause of the decrease is a reduction in the volume of hydrothermal fluid provided to the CBC (in which case the estimated mean rate of decrease in volume flux of CBC is 8.9 m3 d-1). Estimated heat flux, temperature anomalies observed by Hobo, and diffuse flow and subbottom temperature anomalies recorded by other long-term monitoring instruments before, during, and after ODP Leg 158 indicate that the drilling probably affected the fluid flow pattern within the mound but had little effect on the total heat flux from CBC.
    Description: This study was supported by the Ridge Flux project of the Science and Technology Agency, Japan, the US NSF, and the UK NERC BRIDGE program. GK instrumentation development and deployments were supported in large part by NSF grant OCE-9324542.
    Keywords: Heat flux ; Hydrothermal plume ; TAG hydrothermal mound
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2001. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 106, no. B8 (2001): 16145–16161, doi:10.1029/2001JB000373.
    Description: Recently discovered megamullions on the seafloor have been interpreted to be the exhumed footwalls of long-lived detachment faults operating near the ends of spreading segments in slow spreading crust. We conducted five submersible dives on one of these features just east of the rift valley in the Mid-Atlantic Ridge at 26°35′N and obtained visual, rock sample, gravity, and heat flow data along a transect from the breakaway zone (where the fault is interpreted to have first nucleated in ∼2.0–2.2 Ma crust) westward to near the termination (∼0.7 Ma). Our observations are consistent with the detachment fault hypothesis and show the following features. In the breakaway zone, faulted and steeply backtilted basaltic blocks suggest rotation above a deeper shear zone; the youngest normal faults in this sequence are interpreted to have evolved into the long-lived detachment fault. In younger crust the interpreted detachment surface rises as monotonously flat seafloor in a pair of broad, gently sloping domes that formed simultaneously along isochrons and are now thinly covered by sediment. The detachment surface is locally littered with basaltic debris that may have been clipped from the hanging wall. The domes coincide with a gravity high that continues along isochrons within the spreading segment. Modeling of on-bottom gravity measurements and recovery of serpentinites imply that mantle rises steeply and is exposed within ∼7 km west of the breakaway but that rocks with intermediate densities prevail farther west. Within ∼5 km of the termination, small volcanic cones appear on the detachment surface, indicating melt input into the footwall. We interpret the megamullion to have developed during a phase of limited magmatism in the spreading segment, with mantle being exhumed by the detachment fault 〈0.5 m.y. after its initiation. Increasing magmatism may eventually have weakened the lithosphere and facilitated propagation of a rift that terminated slip on the detachment fault progressively between ∼1.3 m.y. and 0.7 m.y. Identifiable but low-amplitude magnetic anomalies over the megamullion indicate that it incorporates a magmatic component. We infer that much of the footwall is composed of variably serpentinized peridotite intruded by plutons and dikes.
    Description: B. Tucholke's research was supported by NSF grant OCE-9503561 and by an award from the Andrew W. Mellon Foundation Endowed Fund for Innovative Research and the Henry Bryant Bigelow Chair in Oceanography at Woods Hole Oceanographic Institution. G. Hirth acknowledges support by NSF grant OCE-9907244.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-10-08
    Description: X-ray computed tomography (XCT) can be used to identify lithologies and deformation structures within geological core, with the potential for the identification processes to be applied automatically. However, because of drilling disturbance and other artifacts, the use of large XCT-datasets in automated processes requires methods of quality control that can be applied systematically. We propose a new systematic method for quality control of XCT data that applies numerical measures to CT slices, and from this obtains data reflective of core quality. Because the measures are numerical they can be applied quickly and consistently between different sections and cores. This quality control processing protocol produces downhole radiodensity profiles from mean CT-values that can be used for geological interpretation. The application of this quality control protocols was applied to XCT data from International Ocean Discovery Program (IODP) Expedition 370 Site C0023 located at the toe of the Nankai accretionary complex. The evaluation of core quality based on this protocol was found to be a good fit to standard-evaluations based on the visual description of core, and could be used to select samples free from drilling disturbance or contamination. The quality-controlled downhole mean CT-value profile has features that can be used to identify lithologies within a formation, the presence and type of deformation structures and to distinguish formations.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-04-05
    Description: 〈jats:p〉 〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-06-28
    Description: A 1.6 km riser borehole was drilled at site C0009 of the NanTroSEIZE, in the center of the Kumano forearc basin, as a landward extension of previous drilling in the southwest Japan Nankai subduction zone. We determined principal horizontal stress orientations from analyses of borehole breakouts and drilling-induced tensile fractures by using wireline logging formation microresistivity images and caliper data. The maximum horizontal stress orientation at C0009 is approximately parallel to the convergence vector between the Philippine Sea plate and Japan, showing a slight difference with the stress orientation which is perpendicular to the plate boundary at previous NanTroSEIZE sites C0001, C0004 and C0006 but orthogonal to the stress orientation at site C0002, which is also in the Kumano forearc basin. These data show that horizontal stress orientations are not uniform in the forearc basin within the surveyed depth range and suggest that oblique plate motion is being partitioned into strike-slip and thrusting. In addition, the stress orientations at site C0009 rotate clockwise from basin sediments into the underlying accretionary prism.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    IODP
    In:  In: Nantroseize Stage 1: Investigations of Seismogenesis, Nankai Trough, Japan : Expeditions 314, 315, and 316 of the Riser Drilling Platform from and to Shingu, Japan, Sites C0001-C0006, 21 September-15 November 2007, and Sites C0001 and C0002, 16 November-18 December 2007, and Sites C0004 and C0006-C0008, 19 December 2007-5 February 2008. Proceedings of the Integrated Ocean Drilling Program, 314/315/316 . IODP, Washington, DC, USA, pp. 1-20.
    Publication Date: 2012-07-06
    Description: Integrated Ocean Drilling Program Expeditions 314, 315, and 316 were carried out as a unified program of drilling collectively known as Stage 1 of the Nankai Trough Seismogenic Zone Experiment, a multistage complex drilling project. A transect of eight sites was selected for riserless drilling to target the frontal thrust region, midslope megasplay fault region, and Kumano forearc basin region. Two of these sites are preparatory pilot holes for planned deep riser drilling operations, whereas the others targeted fault zone material in the shallow, presumed aseismic zone. Expedition 314 was dedicated to in situ measurement of physical properties and borehole imaging through logging while drilling in holes dedicated to that purpose. Expedition 315 was devoted to core sampling and downhole temperature measurements at one site in the megasplay region and one site in the forearc basin. Expedition 316 targeted the frontal and out-of-sequence megasplay fault region in the mid-slope environment. Results on accretionary complex structure, lithology and age, physical properties, and state of stress, which are documented in full in the site chapters of this volume, are here synthesized across the expeditions.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...