GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Singapore : Springer Singapore | Singapore : Imprint: Springer
    Keywords: Geology. ; Geochemistry. ; Mineralogy.
    Description / Table of Contents: Chapter 1. Introduction -- Chapter 2. Mining and the nature of gold deposits -- Chapter 3. Data to processes, examples, and discovery -- Chapter 4. Provinciality of goldfields -- Chapter 5. Enrichment of gold above background -- Chapter 6. Segregation of gold from base metals -- Chapter 7. Timing of deposit formation -- Chapter 8. Ore fluid types as recorded in fluid inclusions -- Chapter 9. Commonality and diversity: both need explanation. Chapter 10. Magmatic processes that lead to gold-only deposits -- Chapter 11. Fluids in the earth’s crust -- Chapter 12. Alteration in gold-only deposits -- Chapter 13. Case study: the formation of a giant goldfield: Kalgoorlie, Western Australia -- Chapter 14. Hydrothermal transport of gold -- Chapter 15. Metamorphic processes leading to gold-only deposits -- Chapter 16. Modification of deposits at high temperature -- Chapter 17. Formation and modification of deposits at lower temperatures -- Chapter 18. Carlin, Witwatersrand and some other gold-only examples -- Chapter 19. Gold-plus Copper-Gold deposits -- Chapter 20. Discoveries and the role of science in the Yilgarn goldfields of Western Australia -- Chapter 21. Discovery of Fosterville Deeps, Victorian Gold Province: long term science. Chapter 22. Summary and conclusions.
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(XVIII, 842 p. 1 illus.)
    Edition: 1st ed. 2022.
    ISBN: 9789811648717
    Series Statement: Modern Approaches in Solid Earth Sciences 22
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Singapore : Springer Singapore | Singapore : Imprint: Springer
    Keywords: Geology. ; Mineralogy. ; China Nord ; Bleilagerstätte ; Zinklagerstätte ; Lagerstättenbildung ; Blei-Zink-Erz ; Lagerstättenkunde ; Innere Mongolei ; Sedimentär-exhalative Lagerstätte ; Metallogenese ; Golderz ; Erzbildung ; Buntmetalllagerstätte ; VHMS-Lagerstätte ; Porphyrkupferlagerstätte ; Orogenese ; Magmatismus ; Goldlagerstätte ; Polymetallische Lagerstätte ; Mineralisation ; Metasomatose ; Lagerstättenbildung
    Description / Table of Contents: Chapter 1. An overview -- Chapter 2. The Bainaimiao Cu-Au-Mo deposit -- Chapter 3. The Huogeqi Cu-Pb-Zn deposit -- Chapter 4. The Dongshengmiao Zn-Pb-Cu deposit -- Chapter 5. The Jiashengpan Zn-Pb deposit.
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(VII, 166 p. 69 illus., 52 illus. in color.)
    Edition: 1st ed. 2021.
    ISBN: 9789811613463
    Series Statement: Springer eBook Collection
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Singapore :Springer Singapore Pte. Limited,
    Keywords: Ore deposits-China. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (170 pages)
    Edition: 1st ed.
    ISBN: 9789811613463
    DDC: 553.4
    Language: English
    Note: Intro -- Contents -- 1 An Overview -- 1.1 Introduction -- 1.2 Regional Geology -- 1.2.1 Langshan-Zhaertai Area -- 1.2.2 The Bainaimiao Area -- 1.2.3 A Special Focus on the Paleozoic Orogenesis -- References -- 2 The Bainaimiao Cu-Au-Mo Deposit -- 2.1 Introduction -- 2.2 Geology of the Bainaimiao Deposit -- 2.3 Geochronologic Constraints -- 2.3.1 Geochronology of the Mineralized Granodiorite Porphyry -- 2.3.2 Ages of the Host Rocks -- 2.3.3 Timing of Regional Metamorphism -- 2.3.4 Age of the Mineralization -- 2.4 Fluid Inclusions Research -- 2.4.1 The Sample Characters and Methods -- 2.4.2 The Type of Fluid Inclusions -- 2.4.3 The Distribution of Fluid Inclusions -- 2.4.4 The Fluid Inclusion Micro-thermometric Analysis Results -- 2.4.5 Raman Spectra Results -- 2.4.6 The Features and Evolution of Ore Fluids at Bainaimiao Deposit -- 2.5 Discussion -- 2.5.1 Evolutionary History of the Bainamiao Arc -- 2.5.2 Timing and Genesis of Mineralization at Bainaimiao -- 2.5.3 Implications for Mineral Exploration -- 2.6 Conclusion -- References -- 3 The Huogeqi Cu-Pb-Zn Deposit -- 3.1 Introduction -- 3.2 Geology of the Huogeqi Deposit -- 3.3 Characteristics of Iron Formations in the Mining Area -- 3.4 Shear Zone-Controlled Cu-Pb-Zn Mineralization -- 3.4.1 Ore Fabrics, Mineral Paragenesis and Mineral Chemistry -- 3.4.2 Shear Zone-Controlled Mineralization During the Uplift of the Host Rocks -- 3.4.3 Copper Mineralization Controlled by Fe-Rich Host Rocks -- 3.5 Ore-Forming Fluids -- 3.5.1 Sampling and Analytical Methods -- 3.5.2 Fluid Inclusion Petrography -- 3.5.3 Micro-thermometric and Raman Analysis -- 3.5.4 Fluid Composition and Density -- 3.5.5 Pressures and Temperatures of Cu Mineralization -- 3.5.6 Origin and Evolution of Cu-Mineralizing Fluids -- 3.6 Constraints from the H, O, S, and Fe Isotopes -- 3.6.1 Sampling and Analytical Methods. , 3.6.2 Stable Isotope Compositions -- 3.6.3 Constraints on the Sources of Ore-Forming Materials -- 3.6.4 An Interpretation in the Context of a Multi-stage Ore-Formation Model -- 3.7 39Ar/40Ar Geochronology -- 3.7.1 The Occurrence of Amphibole and Biotite -- 3.7.2 39Ar/40Ar Dating Method -- 3.7.3 The Mineralization Age -- 3.7.4 Geodynamic Background of Ore Formation -- 3.8 Conclusion and Discussion -- 3.8.1 The Multistage Genetic Model -- 3.8.2 The Relationship Between Cu-Pb-Zn and Orogenic Gold Deposits -- 3.8.3 Implications for Mineral Exploration -- References -- 4 The Dongshengmiao Zn-Pb-Cu Deposit -- 4.1 Introduction -- 4.2 Geology of the Dongshengmiao Deposit -- 4.3 Two Stages of Sulfides: Syngenetic Pyrite and Shear Zone-Controlled Zn-Pb-Cu -- 4.3.1 Syngenetic Sulfide -- 4.3.2 Shear Zone-Controlled Zn-Pb-Cu Mineralization -- 4.4 Isotopic Constraints on the Sources of Metal, Sulfur and Ore-Forming Fluid -- 4.4.1 Lead Isotopes of Sulfides -- 4.4.2 Sulfur Isotope of Sulfides -- 4.4.3 Oxygen and Hydrogen Isotopes of Ore-Forming Fluids -- 4.4.4 Interpretations: Synmetamorphic Remobilization of Stratabound Sulfides -- 4.5 Redistribution of Base Metals Controlled by Host Rock Lithology: Thermodynamic Constraints -- 4.5.1 The Initial Ore-Fluid -- 4.5.2 The Flow-Through Modeling -- 4.6 Ore-Forming Age and Geodynamic Background -- 4.6.1 Sampling and Analysis Methods -- 4.6.2 Results and Interpretations -- 4.6.3 Tectonic Background of Early Cretaceous Zn-Pb-Cu Remobilization -- 4.7 Discussion and Conclusions -- 4.7.1 The Genetic Model -- 4.7.2 Implications for Mineral Exploration -- References -- 5 The Jiashengpan Zn-Pb Deposit -- 5.1 Introduction -- 5.2 Geology of the Jiashengpan Deposit -- 5.3 Geochronology Constraints on the Age of Zn-Pb Mineralization -- 5.3.1 39Ar/40Ar Dating of Syn-ore Hydrothermal Muscovite. , 5.3.2 Zircon U-Pb Dating of Post-ore Granite -- 5.4 Discussion -- 5.4.1 Orogenic-Type Zn-Pb Mineralization During Orogenesis -- 5.4.2 Implications for Mineral Exploration -- References -- 6 Understanding Orogenic-Type Base Metal Deposits: A Summary -- References.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Singapore :Springer Singapore Pte. Limited,
    Keywords: Molybdenum mines and mining. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (854 pages)
    Edition: 1st ed.
    ISBN: 9789811648717
    Series Statement: Modern Approaches in Solid Earth Sciences Series ; v.22
    DDC: 622.34646
    Language: English
    Note: Intro -- Preface -- Contents -- About the Editors -- Chapter 1: Geological Evolution of Qinling Orogen -- 1.1 Introduction -- 1.1.1 Tectonic Location and Framework -- 1.1.2 Inventory of Main Ore Types and Commodities -- 1.2 Formation and Geology of Qinling Orogen -- 1.2.1 Outline -- 1.2.2 Formation and Geotectonic Evolution of the Qinling Orogen -- 1.2.2.1 Kenor and Nuna Supercontinents -- 1.2.2.2 Rodinia Supercontinent Assembly -- 1.2.2.3 Supercontinent Rodinia Breakup and Gondwana Assembly -- 1.2.2.4 Opening and Closure of Paleo-Tethys and Supercontinent Pangea Assembly -- 1.2.2.5 Continental Collision and Intracontinental Tectonism -- 1.2.3 Major Geologic Events in the Qinling Orogen -- 1.2.3.1 The ~3000 Ma Qingyanggou Orogeny -- 1.2.3.2 ~2550 Ma Shipaihe Orogeny -- 1.2.3.3 ~2300 Ma Great Oxidation Event or Guojiayao Orogeny -- 1.2.3.4 ~2050 Ma Songyang Orogeny -- 1.2.3.5 ~1850 Ma Zhongyue or Lüliang Orogeny -- 1.2.3.6 ~ 1600 Ma Xiaoxiong Orogeny -- 1.2.3.7 ~1000 Ma Jinning Orogeny -- 1.2.3.8 ~850 Ma Chengjiang Orogeny -- 1.2.3.9 The Transition from Proterozoic to Paleozoic: Shaolin Event -- 1.2.3.10 The Mid-Paleozoic (~430 Ma) Caledonian Orogeny -- 1.2.3.11 ~ 200 Ma Indosinian Orogeny -- 1.2.3.12 Yanshan Orogeny: Jurassic-Cretaceous Intracontinental Geotectonic Events -- 1.2.3.13 100 Ma Himalayan Orogeny -- 1.3 Basement Formation in Southern North China Craton -- 1.3.1 Multi-Terrane Structure of SNCC -- 1.3.2 Qingyanggou-Type Greenstone Belt and the Primitive Crust -- 1.3.3 Beizi-Type Greenstone Belt and Shipaihe Complex: Continental Nuclei -- 1.3.4 The Junzhao and Dangzehe Greenstone Belts -- 1.3.5 Rhyacian Stratigraphic Unit and the Divergence of Xiaoshan Terrane -- 1.3.6 Orosirian Stratigraphic Unit and Cratonization -- 1.4 Tectonic Setting of Xiong´er and Xiyanghe Groups: Application of Differentiation Index -- 1.4.1 Preamble. , 1.4.2 Tectonic Models of the Xiong'er and Xiyanghe Groups -- 1.4.2.1 Rift or Mantle Plume? -- 1.4.2.2 Continental or Island Arc? -- 1.4.2.3 Coexistence of Continental Arc and Passive Rift -- 1.4.3 Linking Igneous DI Population with Tectonic Settings -- 1.4.3.1 Igneous Differentiation Index (DI) as an Indicator of Tectonic Setting -- 1.4.3.2 Continental and Island Arcs -- 1.4.3.3 Continental and Oceanic Rifts -- 1.4.3.4 Continental Collision Orogens -- 1.4.3.5 Volcanic DI Histograms of Various Tectonic Settings -- 1.4.3.6 Magmatism in Various Tectonic Settings -- 1.4.4 Concluding Remarks -- 1.5 Triassic Tectonic Setting and Indosinian Orogeny -- 1.5.1 Sedimentation -- 1.5.1.1 Songpan Fold Belt -- 1.5.1.2 South Qinling Fold Belt -- 1.5.1.3 North Qinling Accretion Belt and Huaxiong Block -- 1.5.2 Magmatism -- 1.5.2.1 Lithologies and Spatial Distribution -- 1.5.2.2 Northward Geochemical Trend -- 1.5.2.3 Magmatic Evolution and Tectonic Implication -- 1.5.3 Metallogenesis -- 1.5.3.1 Triassic Hydrothermal Deposits -- 1.5.3.2 Spatio-Temporal Distribution and Tectonic Evolution -- 1.5.4 Concluding Remarks -- 1.6 Yanshanian Tectonism and Magmatism -- 1.6.1 Geology and Geochemistry of the Yanshanian Granitoids -- 1.6.2 Differences Between the Mid- and Late Yanshanian Granitoids -- 1.6.3 Tectonic Implications -- 1.6.4 Concluding Remarks -- References -- Chapter 2: Mo Mineralization Types, in Space and Time -- 2.1 Introduction -- 2.2 Trichotomy of Endogenic Processes -- 2.2.1 Epizonogenism and Trichotomy of Endogenic Processes -- 2.2.2 Comparison of Epizonogenism with Other Related Terms -- 2.2.2.1 Diagenesis -- 2.2.2.2 Epithermal or Low-Temperature Hydrothermal Process -- 2.2.2.3 Reworking Process -- 2.3 Three Classes of Hydrothermal Mineral Systems -- 2.3.1 Trichotomy of Hydrothermal Mineral Systems -- 2.3.2 Epizonogenic Hydrothermal Mineral System. , 2.3.3 Metamorphic-Hydrothermal Mineral System -- 2.3.4 Magmatic Hydrothermal Mineral Systems -- 2.4 Genetic Types of Mo Deposits in Qinling Orogen -- 2.5 Mineralization in Space and Time -- 2.5.1 Mineralization: Spatial Relationships -- 2.5.2 Mineralization: Temporal Relationships -- References -- Chapter 3: Porphyry Mo Deposits -- 3.1 Introduction -- 3.1.1 Classification of Porphyry Mo Deposits -- 3.1.2 Outline of Porphyry Mo Deposits in Qinling Orogen -- 3.2 The Jinduicheng Mo Deposit -- 3.2.1 Introduction -- 3.2.2 Regional Geology -- 3.2.3 Ore-Causative Porphyry -- 3.2.3.1 Geology -- 3.2.3.2 Major and Trace Elements Geochemistry -- 3.2.3.3 Geochronology -- 3.2.3.4 Isotope Geochemistry -- 3.2.3.5 Petrogenesis -- 3.2.4 Ore Geology -- 3.2.5 Fluid Inclusions -- 3.2.5.1 Types and Populations -- 3.2.5.2 Microthermometry -- 3.2.5.3 Trapping Pressure and Mineralization Depth -- 3.2.5.4 Laser Raman Spectroscopy Analysis -- 3.2.5.5 Mass Fluid Inclusions Analysis -- 3.2.5.6 Fluid Evolution and Mineralization -- 3.2.6 Ore Deposit Geochemistry -- 3.2.6.1 Trace Elements of the Ores -- 3.2.6.2 Carbon and Oxygen Isotope -- 3.2.6.3 Hydrogen and Oxygen Isotope -- 3.2.6.4 Sulfur Isotope -- 3.2.6.5 Lead Isotope -- 3.2.6.6 Helium and Argon Isotope -- 3.2.7 Timing of Mineralization -- 3.2.8 Concluding Remarks -- 3.3 The Donggou Mo Deposit -- 3.3.1 Introduction -- 3.3.2 Local Geology -- 3.3.3 Donggou Granite Porphyry -- 3.3.3.1 Geology -- 3.3.3.2 Element Geochemistry -- 3.3.3.3 Isotopic Geochronology -- 3.3.3.4 Isotope Geochemistry -- 3.3.3.5 Petrogenesis -- 3.3.4 Ore Geology -- 3.3.5 Fluid Inclusions -- 3.3.5.1 Types and Populations of Fluid Inclusions -- 3.3.5.2 Microthermometry -- Trapping Pressure and Mineralization Depth -- 3.3.5.3 Fluid Evolution and Mineralization -- Halite-Bearing Inclusions and Fluid Boiling -- The Nature and Origin of the Initial Fluids. , Evolution of Fluid System and Mineralization -- 3.3.6 Isotope Geochemistry -- 3.3.7 Timing of Mineralization -- 3.3.8 Concluding Remarks -- 3.4 The Yuchiling Mo Deposit -- 3.4.1 Introduction -- 3.4.2 Regional and Deposit Geology -- 3.4.3 Host and Ore-Causative Granitic Intrusions -- 3.4.3.1 Geology -- 3.4.3.2 Element Geochemistry -- 3.4.3.3 Geochronology -- Zircon U-Pb Dating -- Biotite 40Ar/39Ar dating -- 3.4.3.4 Isotopic Study -- 3.4.3.5 Source and Evolution of the Magmas -- 3.4.4 Alteration and Mineralization -- 3.4.4.1 Veins and Mineralization Stages -- 3.4.4.2 Hydrothermal Alteration -- 3.4.5 Fluid Inclusion Geochemistry -- 3.4.5.1 Types and Occurrence -- 3.4.5.2 Microthermometry -- 3.4.5.3 CO2 Contents and Mo Mineralization -- 3.4.5.4 Cationic Composition, Mo Contents and Mineralization -- 3.4.5.5 Fluid Immiscibility and Evolving P-T Conditions -- 3.4.6 Isotopic Geochemistry -- 3.4.6.1 Hydrogen and Oxygen Isotope -- 3.4.6.2 Sulfur Isotope -- 3.4.7 Timing of Mineralization -- 3.4.7.1 Molybdenite Re-Os Dating -- 3.4.7.2 Magma Emplacement and Mineralization -- 3.4.8 Discussion -- 3.4.8.1 Duration of Magmatic-Hydrothermal Activity -- 3.4.8.2 Zircon Eu/Eu* and Ce/Ce* Values: Tracers of Mineralization? -- 3.4.9 Concluding Remarks -- 3.5 The Leimengou Mo Deposit -- 3.5.1 Introduction -- 3.5.2 Regional and Deposit Geology -- 3.5.2.1 Regional Geology -- 3.5.2.2 Deposit Geology -- 3.5.3 The Ore-Causative Porphyry -- 3.5.3.1 Geology and Petrology -- 3.5.3.2 Element Geochemistry -- 3.5.3.3 Geochronology -- 3.5.4 Ore Geology -- 3.5.4.1 The Ore Bodies -- 3.5.4.2 Vein Systems -- 3.5.4.3 Hydrothermal Alteration -- 3.5.5 Fluid Inclusion Studies -- 3.5.5.1 Fluid Inclusion Types -- 3.5.5.2 Microthermometry -- 3.5.5.3 Fluid Composition -- 3.5.5.4 Nature and Evolution of the Ore-Forming Fluids -- 3.5.6 Isotope Studies -- 3.5.6.1 Hydrogen and Oxygen Isotope. , 3.5.6.2 Carbon and Oxygen Isotope -- 3.5.6.3 Sulfur Isotopes -- 3.5.7 Geochronology -- 3.5.8 Summary and Concluding Remarks -- 3.6 The Wenquan Mo Deposit -- 3.6.1 Introduction -- 3.6.2 Regional and Deposit Geology -- 3.6.3 The Ore-Causative Granite -- 3.6.3.1 Geology and Petrology -- 3.6.3.2 Element Geochemistry -- 3.6.3.3 Geochronology -- 3.6.3.4 Isotope Geochemistry -- 3.6.3.5 Petrogenesis -- 3.6.4 Alteration and Mineralization -- 3.6.4.1 Mineralization -- 3.6.4.2 Hydrothermal Alteration -- 3.6.4.3 Mineral Paragenesis -- 3.6.4.4 REE Analysis of Quartz and Calcite -- 3.6.5 Fluid Inclusions Studies -- 3.6.5.1 Fluid Inclusion Types and Occurrence -- 3.6.5.2 Microthermometry -- 3.6.5.3 Fluid Composition -- 3.6.6 Isotope Geochemistry -- 3.6.6.1 Carbon and Oxygen Isotope Systematics -- 3.6.6.2 Hydrogen and Oxygen Isotope Systematics -- 3.6.6.3 Sulfur Isotopes -- 3.6.6.4 Lead Isotopes -- 3.6.7 Timing of Mineralization -- 3.7 Concluding Remarks -- References -- Chapter 4: Porphyry-Skarn Mo Systems -- 4.1 Introduction -- 4.2 Nannihu-Sandaozhuang Mo-W Deposit -- 4.2.1 Introduction -- 4.2.2 Local Geology -- 4.2.3 The Ore-Causative Porphyry -- 4.2.3.1 Geology -- 4.2.3.2 Major and Trace Elements -- 4.2.3.3 Isotopic Study -- Whole-Rock O Isotopic Studies -- Sr Isotope Studies -- Nd Isotope Studies -- Pb Isotope Studies -- 4.2.3.4 Petrogenesis of the Nannihu Granites -- 4.2.4 Ore Geology -- 4.2.5 Fluid Inclusions -- 4.2.5.1 Fluid Inclusion Types -- 4.2.5.2 Microthermometry -- 4.2.5.3 Trapping Pressure and Mineralization Depth -- 4.2.5.4 Chemical Composition -- 4.2.5.5 Nature and Evolution of the Fluids -- 4.2.5.6 Hydrothermal Mineralization Process -- 4.2.6 Ore Geochemistry -- 4.2.6.1 Hydrogen and Oxygen Isotopes -- 4.2.6.2 Carbon and Oxygen Isotopes -- 4.2.6.3 Sulfur Isotopic Compositions -- 4.2.6.4 Lead Isotopic Compositions. , 4.2.7 Timing of the Mineralization.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-09-09
    Description: Energies, Vol. 10, Pages 1362: Enumerative Optimization Procedure for the Gear Train Optimization Problem of a Two-Speed Dedicated Electric Transmission Energies doi: 10.3390/en10091362 Authors: Xiangyang Xu Zhifeng Chen Yanjing Liu Peng Dong Yanfang Liu Gear train optimization problems (GTOPs) can be very difficult. This paper proposes an enumerative optimization procedure (EOP) for the GTOP of a two-speed dedicated electric transmission (2DET) for electric vehicles (EVs). The EOP combines enumeration with the Min-Max Principle of Optimality (MMPO). First, the requirements of the EV and the requirements of manufacture and operation were checked in a dedicated order to obtain the feasible region of the GTOP. Then, the MMPO was implemented within the feasible region to reveal the global optimum in terms of the performance of the EV, the load capacity of the gears and the size of the gear train (GT). Results demonstrated that the EOP was effective in determining the feasible region and simultaneously and globally optimizing multiple criteria for the GTOP. The idea of combining enumeration with optimization, as the EOP presents, may be helpful to solve other GTOPs and provide global optima that are immediately practical and applicable.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...