GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    ELSEVIER SCIENCE BV
    In:  EPIC3Journal of Experimental Marine Biology and Ecology, ELSEVIER SCIENCE BV, 497, pp. 219-229, ISSN: 0022-0981
    Publication Date: 2017-11-21
    Description: According to climate models, coastal ecosystems will face an increased frequency of heat waves and increased turbidity due to terrestrial sediment run-off induced by increasing precipitation. Several studies have examined the effects of heat waves and turbidity separately, whereas this study analysed the individual effects of both stressors as well as their interaction, because stressors affect communities differently when acting in combination. Using a factorial experimental design, we simulated heat waves (22 °C and 26 °C compared to an 18 °C control) and turbidity (sediment addition). The response of the phytoplankton community was analysed for the aggregate parameters biovolume and diversity index (H′), as well as for community composition. Heat waves had a significant negative effect on biovolume, whereas turbidity tended to affect biovolume positively. Repeated measures ANOVA revealed significant interactions of heat waves and turbidity for H′ and community composition. Strong heat waves (26 °C) alleviated the otherwise positive effect of turbidity on H′, i.e. highest diversity remained in the turbid control. Diatoms gained dominance in the control and the 22 °C heat wave treatment with Cylindrotheca closterium being the successful competitor. At 26 °C this species was lost and small flagellates dominated the experimental communities. Future increases in heat wave intensity and frequency may thus induce major changes in phytoplankton community structure whereas algae might profit from increased turbidity as an additional source of nutrients.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-11-09
    Description: 1. A resampling of 38 small farmland ponds in Belgium after 10 years revealed a high temporal species turnover for both phytoplankton and zooplankton communities, associated with substantial changes in abiotic factors, especially a reduction in total phosphorus concentration. 2. Across ponds, phytoplankton biomass decreased while evenness and richness increased between the samplings in 2003 and 2013. By contrast, the zooplankton assemblage was characterised by lower biomass, richness and evenness in 2013. Ponds experiencing larger environmental change showed stronger changes in phytoplankton richness and evenness. 3. Resource use efficiency (RUE) of zooplankton increased with greater environmental change and zooplankton evenness, which points to a switch towards species with higher RUE or greater variety in food sources in higher trophic levels. 4. As ponds are important habitats for freshwater biodiversity and ecosystems services, the strong but predictable species turnover and the opposing effects of environmental change on different trophic levels need to be embedded in conservation and management plans.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-12-19
    Description: 1. Reliable determination of organisms is a prerequisite to explore their spatial and temporal occurrence and to study their evolution, ecology, and dispersal. In Europe, Bavaria (Germany) provides an excellent study system for research on the origin and diversification of freshwater organisms including dinophytes, due to the presence of extensive lake districts and ice age river valleys. Bavarian freshwater environments are ecologically diverse and range from deep nutrient‐poor mountain lakes to shallow nutrient‐rich lakes and ponds. 2. We obtained amplicon sequence data (V4 region of small subunit‐rRNA, c. 410 bp long) from environmental samples collected at 11 sites in Upper Bavaria. We found 186 operational taxonomic units (OTUs) associated with Dinophyceae that were further classified by means of a phylogenetic placement approach. 3. The maximum likelihood tree inferred from a well‐curated reference alignment comprised a systematically representative set of 251 dinophytes, covering the currently known molecular diversity and OTUs linked to type material if possible. Environmental OTUs were scattered across the reference tree, but accumulated mostly in freshwater lineages, with 79% of OTUs placed in either Apocalathium, Ceratium, or Peridinium, the most frequently encountered taxa in Bavaria based on morphology. 4. Twenty‐one Bavarian OTUs showed identical sequences to already known and vouchered accessions, two of which are linked to type material, namely Palatinus apiculatus and Theleodinium calcisporum. Particularly within Peridiniaceae, delimitation of Peridinium species was based on the intraspecific sequence variation. 5. Our approach indicates that high‐throughput sequencing of environmental samples is effective for reliable determination of dinophyte species in Bavarian lakes. We further discuss the importance of well‐curated reference databases that remain to be developed in the future.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    WILEY-BLACKWELL PUBLISHING
    In:  EPIC3Ecology Letters, WILEY-BLACKWELL PUBLISHING, ISSN: 1461-023X
    Publication Date: 2017-11-14
    Description: Ecological stability is the central framework to understand an ecosystem’s ability to absorb or recover from environmental change. Recent modelling and conceptual work suggests that stability is a multidimensional construct comprising different response aspects. Using two freshwater mesocosm experiments as case studies, we show how the response to single perturbations can be decomposed in different stability aspects (resistance, resilience, recovery, temporal stability) for both ecosystem functions and community composition. We find that extended community recovery is tightly connected to a nearly complete recovery of the function (biomass production), whereas systems with incomplete recovery of the species composition ranged widely in their biomass compared to controls. Moreover, recovery was most complete when either resistance or resilience was high, the latter associated with low temporal stability around the recovery trend. In summary, no single aspect of stability was sufficient to reflect the overall stability of the system.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    ELSEVIER SCIENCE BV
    In:  EPIC3Journal of Sea Research, ELSEVIER SCIENCE BV, 103, pp. 103-112, ISSN: 1385-1101
    Publication Date: 2017-01-26
    Description: Variability in upwelling events may lead to periods of constrained food availability in the northern Benguela upwelling system (NBUS), thereby affecting the physiological state and metabolic activity of euphausiids. Most attention has so far been paid to seasonal effects but little is known about regional variability.Metabolic activity (expressed by respiration and excretion rates) and physiological state (expressed by reproductive effort and moult activity) in Euphausia hanseni were examined at different stations during austral summer (minimum upwelling) and austral winter (maximum upwelling). Overall, regional differences in physiological state, influencing metabolic activity, were greater than seasonal ones, indicating favourable conditions for growth and reproduction year-round. Higher respiration rateswere found for females in more advanced stages of sexual development.Moult stage did not affect oxygen consumption rates, however. The physiological state of E. hanseni at the time of capture may serve as ameaningful indicator of the associated hydrographic conditions in the NBUS,to be further used in eco-system analysis on seasonal or long-term time scales. A latitudinal comparison of species highlights the extraordinary physiological plasticity of euphausiids.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    WILEY-BLACKWELL PUBLISHING
    In:  EPIC3Reviews in Aquaculture, WILEY-BLACKWELL PUBLISHING, ISSN: 1753-5131
    Publication Date: 2019-07-17
    Description: There is significant commercial and research interest in the application of sea cucumbers as nutrient recyclers and processors of particulate waste in polyculture or integrated multitrophic aquaculture (IMTA) systems. The following article reviews examples of existing IMTA systems operating with sea cucumbers, and details the role and effect of several sea cucumber species in experimental and pilot IMTA systems worldwide. Historical observations and quantification of impacts of sea cucumber deposit-feeding and locomotion are examined, as is the development and testing of concepts for the application of sea cucumbers in sediment remediation and site recovery. The extension of applied IMTA systems is reported, from basic piloting through to economically viable farming systems operating at commercial scales. The near-global recognition of the ecological and economic value of deposit-feeding sea cucumbers in IMTA applications within existing and developing aquaculture industries is discussed. Predictions and recommendations are offered for optimal development of sea cucumber IMTA globally. Future directions within the industry are indicated, and key areas of ecological, biological and commercial concern are highlighted to be kept in mind and addressed in a precautionary manner as the industry develops.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-12-21
    Description: Gambierdiscus, a benthic dinoflagellate, produces ciguatoxins that cause the human illness Ciguatera. Ciguatoxins are polyether ladder compounds that have a polyketide origin, indicating that polyketide synthases (PKS) are involved in their production. We sequenced transcriptomes of Gambierdiscus excentricus and Gambierdiscus polynesiensis and found 264 contigs encoding single domain ketoacyl synthases (KS; G. excentricus: 106, G. polynesiensis: 143) and ketoreductases (KR; G. excentricus: 7, G. polynesiensis: 8) with sequence similarity to type I PKSs, as reported in other dinoflagellates. In addition, 24 contigs (G. excentricus: 3, G. polynesiensis: 21) encoding multiple PKS domains (forming typical type I PKSs modules) were found. The proposed structure produced by one of these megasynthases resembles a partial carbon backbone of a polyether ladder compound. Seventeen contigs encoding single domain KS, KR, s-malonyltransacylase, dehydratase and enoyl reductase with sequence similarity to type II fatty acid synthases (FAS) in plants were found. Type I PKS and type II FAS genes were distinguished based on the arrangement of domains on the contigs and their sequence similarity and phylogenetic clustering with known PKS/FAS genes in other organisms. This differentiation of PKS and FAS pathways in Gambierdiscus is important, as it will facilitate approaches to investigating toxin biosynthesis pathways in dinoflagellates.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    ELSEVIER SCIENCE BV
    In:  EPIC3Journal of Experimental Marine Biology and Ecology, ELSEVIER SCIENCE BV, 497, pp. 61-70, ISSN: 0022-0981
    Publication Date: 2017-10-03
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    WILEY-BLACKWELL PUBLISHING
    In:  EPIC3FEMS Microbiology Ecology, WILEY-BLACKWELL PUBLISHING, ISSN: 0168-6496
    Publication Date: 2016-06-02
    Description: Large amounts of organic carbon are stored in Arctic permafrost environments, and microbial activity can potentially mineralize this carbon into methane, a potent greenhouse gas. In this study, we assessed the methane budget, the bacterial methane oxidation (MOX) and the underlying environmental controls of arctic lake systems, which represent substantial sources of methane. Five lake systems located on Samoylov Island (Lena Delta, Siberia) and the connected river sites were analyzed using radiotracers to estimate the MOX rates, and molecular biology methods to characterize the abundance and the community composition of methane-oxidizing bacteria (MOB). In contrast to the river, the lake systems had high variation in the methane concentrations, the abundance and composition of the MOB communities, and consequently, the MOX rates. The highest methane concentrations and the highest MOX rates were detected in the lake outlets and in a lake complex in a floodplain area. Though, in all aquatic systems we detected both, Type I and II MOB, in lake systems we observed a higher diversity including MOB, typical of the soil environments. The inoculation of soil MOB into the aquatic systems, resulting from permafrost thawing, might be an additional factor controlling the MOB community composition and potentially methanotrophic capacity.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    WILEY-BLACKWELL PUBLISHING
    In:  EPIC3Marine Ecology-An Evolutionary Perspective, WILEY-BLACKWELL PUBLISHING, ISSN: 0173-9565
    Publication Date: 2015-03-20
    Description: To understand the adaptation of euphausiid (krill) species to oxygen minimum zones (OMZ), respiratory response and stress experiments combining hypoxia/reoxygenation exposure with warming were conducted. Experimental krill species were obtained from the Antarctic (South Georgia area), the Humboldt Current system (HCS, Chilean coast), and the Northern California Current system (NCCS, Oregon). Euphausia mucronata from the HCS shows oxyconforming pO2-dependent respiration below 80% air saturation (18 kPa). Normoxic subsurface oxygenation in winter posed a “high oxygen stress” for this species. The NCCS krill, Euphausia pacifica, and the Antarctic krill, Euphausia superba maintain respiration rates constant down to low critical pO2 values of 6 kPa (30% air saturation) and 11 kPa (55% air saturation), respectively. Antarctic krill had low antioxidant enzyme activities, but high concentrations of the molecular antioxidant glutathione (GSH) and was not lethally affected by 6 h exposure to moderate hypoxia. Temperate krill species had higher SOD (superoxide dismutase) values in winter than in summer, which relate to higher winter metabolic rate (E. pacifica). In all species, antioxidant enzyme activities remained constant during hypoxic exposure at the typical temperature for their habitat. Warming by 7°C above their typical temperature in summer increased SOD activities and GSH levels in E. mucronata (HCS), but no oxidative damage occurred. In winter, when the NCCS is well mixed and the OMZ is deeper, +4°C of warming combined with hypoxia represents a lethal condition for E. pacifica. In summer, when the OMZ expands upwards (100 m subsurface), antioxidant defences counteracted hypoxia and reoxygenation effects in E. pacifica, but only at mildly elevated temperature (+2°C). In this season, experimental warming by +4°C reduced antioxidant activities and the combination of warming with hypoxia again caused mortality of exposed specimens. We conclude that a climate change scenario combining warming and hypoxia represents a serious threat to E. pacifica and, as a consequence, NCCS food webs.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...