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A B S T R A C T

In both sedimentary and rocky coastal habitats, epibenthic mytilid mussels use byssal threads for attachment to
the substratum and to form beds with high densities of individuals. Number and attachment strength of byssal
threads can be adjusted according to external factors such as hydrodynamic forces or predators, but it is un-
known whether mytilid mussels distinguish between substrata of different quality for byssus attachment in
different habitat types. In field studies, we examined the attachment strength of the mussel Perumytilus pur-
puratus growing on Pacific hard- and soft-bottom shores in Chile and of the blue mussel Mytilus edulis from an
Atlantic rocky shore in France and a sedimentary shore in the North Sea (Germany), respectively. In additional
laboratory experiments, we studied mussel substratum selectivity of both bivalve species from soft and hard
bottoms by offering living versus dead, barnacle-fouled vs. unfouled, and firmly attached vs. loose conspecifics.
In the field, attachment strength of P. purpuratus on hard bottoms was substantially higher than on soft bottoms
even though mussels produced more byssus in the latter habitat. In contrast, blue mussels M. edulis showed only
a slightly reduced attachment strength on soft compared to hard bottoms. In the soft-bottom habitat, fouled
individuals from the edge of a blue mussel bed were especially strongly attached. In the byssus attachment
behavior experiments, P. purpuratus from both habitats showed a significant preference for living conspecifics
and those from soft bottoms preferred firmly attached conspecifics. Blue mussels had no preference for particular
conspecifics except those from soft-bottom habitats, which preferred fouled over clean mussels. In general, in the
choice experiments hard-bottomM. edulis produced more byssus. Our results confirmed that mytilid mussels may
show active substratum choice for byssus attachment, which depends on mussel species and habitat type. The
results suggest that mussels are adapted to a particular habitat type, with P. purpuratus showing lower adaptation
to soft-bottom areas while M. edulis shows successful strategies for both environments.

1. Introduction

One major determinant for population dynamics and the survival
potential of marine species in both rocky and soft-bottom coastal ha-
bitats is their ability to resist biotic and abiotic stressors such as pre-
dation and dislodgment by waves (e.g. Reise, 1985; Denny and Gaylord,
2010). Especially, strong hydrodynamic forces can pose a challenge for
benthic invertebrate species, which might need to adjust their body
size, morphology and also their behavior to persist (e.g. Helmuth et al.,
2006). Thus, coastal organisms have evolved a suite of strategies to
cope with environmental conditions and habitat quality (e.g.

substratum types) to ensure survival and persistence (e.g. Wethey,
2002; Harley, 2008). Knowledge of strategies used by benthic in-
dividuals to resist stressful conditions is thus essential to understand the
ability of species to occur within a habitat and to expand their geo-
graphic ranges. Additionally, natural removal of sessile and semi-sessile
habitat-forming organisms (e.g. bivalves, corals, sponges, or kelps) by
hydrodynamic forces has a controlling influence on community struc-
ture in intertidal habitats (Levin and Paine, 1974; Paine and Levin,
1981). Consequently, how different ecosystem engineers can cope with
predominant environmental conditions is also crucial for the occur-
rence and dynamics of their associated organisms.

http://dx.doi.org/10.1016/j.jembe.2017.09.009
Received 29 November 2016; Received in revised form 8 September 2017; Accepted 15 September 2017

⁎ Corresponding author at: Departamento de Biología Marina, Facultad Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile.
E-mail address: moises.aguilera@ucn.cl (M.A. Aguilera).

Journal of Experimental Marine Biology and Ecology 497 (2017) 61–70

0022-0981/ © 2017 Elsevier B.V. All rights reserved.

MARK

http://www.sciencedirect.com/science/journal/00220981
https://www.elsevier.com/locate/jembe
http://dx.doi.org/10.1016/j.jembe.2017.09.009
http://dx.doi.org/10.1016/j.jembe.2017.09.009
mailto:moises.aguilera@ucn.cl
http://dx.doi.org/10.1016/j.jembe.2017.09.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jembe.2017.09.009&domain=pdf


Ecosystem-engineering organisms including byssus thread produ-
cing mussels colonize coastal systems characterized by stressful condi-
tions (such as strong hydrodynamic forces), because they have different
adaptive attachment strategies allowing persistence and recovery
(Levin and Paine, 1974; Carrington et al., 2009; and see Carrington
et al., 2015 for review). Increasing hydrodynamics enhance the risk of
dislodgment (Witman and Suchanek, 1984), which decreases with
mussel attachment strength (e.g. Carrington, 2002a; Carrington et al.,
2008). It is known that mussels can adapt their attachment strength by
means of increased byssus production (Denny and Gaylord, 2010;
Carrington et al., 2015), which depends on mussel size, with small-sized
individuals typically producing more byssus threads than large-sized
conspecifics (e.g. Babarro and Carrington, 2013). While mussels might
also adjust the thickness of byssus in response to hydrodynamic varia-
bility (Carrington et al., 2015), they mostly enhance or decrease the
number of byssus threads (Carrington et al., 2008; Babarro and
Carrington, 2013).

The ability to attach byssal threads to the substratum and to form
dense aggregations has permitted mussels to colonize both hard- and
soft-bottom habitats, where they can attach to each other because little
suitable attachment substratum is available (see for example Young,
1983a; Berkman et al., 1998; Buschbaum, 2000). Specifically, re-
ciprocal byssus attachment between conspecifics results in dense ag-
gregations of individuals (Okamura, 1986a; Alvarado and Castilla,
1996) in which the position of an individual seems to be important for
dislodgement risk since individuals in the center may be better pro-
tected from drag forces than bivalves at the edge of a mussel bed
(Witman and Suchanek, 1984; Okamura, 1986b; Bell and Gosline,
1997; wa Kangeri et al., 2014). Thus, predictable conspecific signals can
be critical for survival and individual persistence through firm attach-
ment in different habitats. Specifically, shells of recently dead mussels,
for example, are common in mussel beds (Buschbaum, 2001; Gutiérrez
et al., 2003), yet they do not offer the same hold as shells of living
conspecifics. Similarly, neighboring conspecifics that are firmly fas-
tened to the substratum can be important for attachment strength of an
individual. Furthermore, epibenthic molluscs are frequently overgrown
by epibionts, which may influence their performance at various levels,
e.g. by increasing hydrodynamic forces for an overgrown individual
(e.g. see Laudien and Wahl, 1999; Buschbaum and Saier, 2001;
Buschbaum et al., 2016). Therefore, mussels seeking byssus attachment
sites may prefer clean conspecifics.

Thus, some conspecifics could offer a better hold than others (e.g.
live > dead, clean > fouled, firmly attached > loose), and the
question arises whether mussels seeking attachment sites are able to
distinguish between individuals and substrata of different quality.
Recent studies conducted in soft-bottom habitats showed that M. edulis
attach byssus threads primarily to large shell fragments rather than on
living conspecifics, depending on levels of hydrodynamic disturbance
(wa Kangeri et al., 2014). Similarly, sheltered mussels seem to invest
less in byssus threads than edge-positioned (or wave-exposed) in-
dividuals (e.g. Cheung et al., 2009; wa Kangeri et al., 2016). Indeed,
these findings indicate that blue mussels are capable of distinguishing
between different substratum types (e.g. Khalaman and Lezin, 2015)
and also suggest high plasticity in adhesion strategies of individuals
within the mussel matrix. However, it is not known whether byssus
placement on conspecifics is selective in mytilid mussels and how ha-
bitat predictability for attachment substratum (hard versus soft bot-
toms) could influence selectivity.

Based on these considerations, we examined the following specific
questions, which guide the present study: (i) Is mussel attachment
strength influenced interactively by size, epibiont load and mussel po-
sition within the bed matrix? (ii) Do mussels selectively attach byssus to
particular conspecifics? (iii) Can habitat (substratum) predictability for
attachment influence selectivity? Consequently, the main goal of our
study was to examine attachment strength, and selective byssal at-
tachment to conspecifics in two mytilid species, namely the purple

mussel Perumytilus purpuratus and the blue mussel Mytilus edulis. Both
species occur in both hard- and soft-bottom habitats and we studied
interspecific and habitat-specific differences in attachment strength and
selective byssus attachment. In field surveys, we investigated whether
attachment strength or dislodgement risk of mussels is related to shell
size, position of individuals within the mussel matrix, presence of
barnacle epibionts, and habitat type. We specifically examined inter-
active effects as position (edge versus center) and epibiont presence
(clean versus barnacle-fouled) could influence the expected linear re-
lationship between size and attachment strength of individual mussels.

In controlled laboratory experiments we examined whether mussels
are selective with respect to conspecifics for byssus attachment, and
whether individual choice varies with habitat type (i.e. soft versus hard
bottom). Thus the general hypothesis was that mytilid mussels, when
offered a choice, show selectivity by attaching their byssus threads to
shells of better suited conspecifics as an adaptive strategy to enhance
survival. We tested whether mussels attach byssus preferentially to
living instead of dead conspecifics, clean instead of fouled individuals,
firmly attached instead of lose mussels.

2. Material and methods

2.1. Study sites and study species

The purple mussel Perumytilus purpuratus is dominant at mid to high
rocky intertidal levels from Peru to southern Chile (Prado and Castilla,
2006), with marked connectivity patterns across the SE Pacific coast
(Guiñez et al., 2016). The blue mussel Mytilus edulis is common on soft
bottoms along the northern Atlantic, and N and S Pacific coasts (Molen
et al., 2012).

Purple mussels were examined at two different locations in Chile
(Totoralillo and Puerto Montt, Fig. 1a and b), and blue mussels were
studied at two different sites in NW Europe (Concarneau, France; Sylt,
Germany, see Fig. 1c and d). At all sites mussels occur in dense patches
of many aggregated individuals (see Fig. 2).

Purple mussels P. purpuratus from hard-bottom habitats were col-
lected at Playa Totoralillo, approximately 10 km south of Coquimbo
(30°04′S, 71°22′W), where mussels occur in dense patches (Thiel and
Ullrich, 2002). Purple mussels from soft-bottom habitats were studied
on tidal flats near Pelluco to the south-east of Puerto Montt (41°29′S,
72°52′W, Fig. 1b), where purple mussels form scattered beds together
withM. edulis (Buschbaum et al., 2009). Blue mussels from hard-bottom
habitats were studied in Concarneau (France) (47°52′N, 03°53′E,
Fig. 1c). Blue mussels from soft-bottom habitats were studied on tidal
flats near the island of Sylt (55°02′N, 08°06′E) in the northern Wadden
Sea (eastern North Sea) (see Fig. 1d), where they form extensive beds
(Reise, 1985, Kochmann et al., 2008, Buschbaum et al., 2009; for more
detailed descriptions of the study sites, see Supplementary Material S1).

2.2. Attachment strength of mussels in the field

At the four study sites, we measured the attachment strength of
randomly selected individual mussels (i.e. no specific choice was made
during the investigations) using a spring balance. We fastened a la-
boratory clamp to a mussel, and using a plastic hook we pulled per-
pendicularly to the substratum with the spring balance until the mussel
was detached from the substratum. Occasionally some of the randomly
selected mussels were deeply immersed in the bed matrix and the clamp
could not be firmly attached; in those cases, a small hole (i.e. about
1 mm wide) was made in the accessible section of the mussel shell
through which a hook was inserted, which had no observable effect on
the mussel response. Measurements where entire mussel clumps of
several individuals were detached from the mussel bed were not con-
sidered, as herein we were interested in the attachment strength of
individual mussels; these cases were rare and limited to mussels from
soft-bottom habitats.
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Attachment strength (i.e. force required for dislodgement) of mus-
sels was measured to the nearest 0.1 Newton, and after detachment the
body length of all mussels was measured to the nearest 0.1 mm with a
caliper. We estimated attachment strength of 200 individuals of each
species for each habitat type (Table 1a). For attachment strength
measurements, we considered the effect of mussel position (edge and
center) and of barnacle epibionts (clean and fouled). We measured at-
tachment strength of 50 clean and 50 fouled (at least 50% shell

coverage; estimated visually) mussels from the center, and of 50 clean
and 50 fouled individuals from the edge of the mussel bed (see
Table 1a). Thus, we evaluated the interactive effect of these variables
(position and epibiont presence) on the relationship between mussel
shell size and attachment strength.

Fig. 1. Map depicting the different locations where studies were conducted in (A).
Concarneau (France), (B) Sylt (Germany), (C) Totoralillo (Chile), and (D) Pelluco (Chile). Arrows indicate the specific location where the samples and studies were conducted.
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2.3. Selective byssus attachment behavior experiments

In order to evaluate the ability of individual mussels P. purpuratus
and M. edulis to selectively choose particular conspecifics for byssus
attachment, we conducted laboratory experiments considering different
conditions of individual mussels for attachment (“choice mussel”) and
the habitat where mussels were collected, i.e. soft and hard bottoms
(see Table 1b).

2.3.1. General protocol
All experiments were conducted during the summer months (i.e.

July–August in Germany and France, December–March in Chile). For
each experiment, one focal individual was offered with a choice of two
different conspecifics. The choice mussels were fixed to a plastic screen
next to each other with plastic cable-ties, which ensured that these

individuals could not open during the experiment (Fig. 3). Each mussel
was held closed with one cable-tie and attached to the screen with a
‘connective’ cable-tie. The objective of holding the choice mussels
closed was to avoid that they could place byssal threads on the focal
mussel. We used underwater cement to glue a thin thread to the focal
mussel, which was then tied to the screen in a way that it was held in
place near the choice mussels but was laying loose on the screen
(Fig. 3). The objective of holding the focal mussel on a leash was to
ensure that it was kept within reach of the choice mussels while al-
lowing it to move freely and choose between the offered mussels. The
two mussels offered as attachment substratum were placed at equal
distance (~ half body length) from the focal mussel. Both focal and
choice mussels were collected in the field and transferred to the la-
boratory where they were immediately fastened to the plastic screen to
start the experiment. During the experiment, mussels were held in large
laboratory tanks with flowing seawater, which was continuously

Fig. 2. General view of the focal species Perumytilus
purpuratus and Mytilus edulis patches observed in
both hard- and soft-bottom habitats.

Table 1
Summary of the number of total mussel individuals used in different field and laboratory
experiments conducted to estimate attachment strength and selective conspecific choice
of the mussel Perumytilus purpuratus (Chile) and Mytilus edulis (Germany, France) in hard-
and soft-bottom habitats. “Position” in the attachment strength study, denote where in-
dividuals were found within the mussel matrix (i.e. in the edge or the center).

P. purpuratus M. edulis

Hard Soft Hard Soft

a) Attachment strength
Position
Edge 100 100 100 100
Center 100 100 100 100

Condition
Clean 50 50 50 50
Fouled 50 50 50 50

b) Conspecific selective choice
Conspecific condition
Alive 60 40 80 60
Dead 60 40 80 60
Clean 60 60 20 60
Fouled 60 60 20 60
Firm 60 40 54 45
Loose 60 40 54 45

Fig. 3. Experimental set-up for the byssal attachment behavior experiments; focal mussel
(F, Mytilus edulis in the photograph) was glued to a thread that was fixed to the plastic
screen (green), and choice mussels (C; fouled versus clean in this picture) were held
firmly closed with one cable-tie and with a second cable-tie attached to the screen. (For
interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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pumped from the natural environment. After 24 h we counted how
many byssal threads the focal mussel had attached to the choice mus-
sels. We also recorded the number of byssal threads placed on the
plastic screen surface. For each mussel species and habitat, we con-
sidered three different and independent combinations of choice mus-
sels:

• Dead versus alive: In order to examine whether focal mussels are
able to distinguish and choose between dead and living mussels we
offered empty shells and live mussels. Mussels were collected and
separated randomly in two groups. Mussels from one group were
opened and the flesh was removed carefully, thoroughly cleaning
the interior of the shells, such that only the two shell valves re-
mained. Empty valves were closed as to mimic a living mussel and
clamped with a cable tie to the screen at the side of a living mussel
that was attached to the screen in the same way.

• Clean versus fouled: In order to examine whether focal mussels are
able to distinguish and choose between clean and fouled mussels, we
offered clean mussels together with mussels that were heavily
overgrown with barnacles (shell coverage of at least 50%) from the
respective study sites where balanids are the most frequent mussel
epibionts (see Buschbaum et al., 2009; Valdivia et al., 2014). During
collection of the choice mussels we attempted to find overgrown and
clean mussels, but for M. edulis at Sylt and Concarneau, it was dif-
ficult to find completely clean mussels. In this case, we searched for
mussels that had only few barnacles (shell coverage less than 10%),
which we carefully removed before the experiment.

• Loose versus firmly attached: In order to examine whether focal
mussels are able to distinguish and choose between loose and firmly
attached mussels we offered mussels loosely attached to the screen
together with mussels firmly fixed to the screen. Herein we only
used clean mussels. The connective cable-tie was either closed
completely in order to hold the mussel firmly attached to the screen
or it was not completely fixed in order to leave this choice mussel
relatively loose.

For each choice mussel condition considered, 40 to 60 focal mussels
were used for the experiments (see Table 1b). Exceptionally, we used 80
focal mussels for dead/alive experiments and 20 individuals for clean/
fouled experiments in Concarneau for M. edulis (see Table 1b). Each
experiment was conducted independently and separately for P. pur-
puratus and M. edulis. In each assay, we counted the number of byssal
threads produced by the different focal mussels on the different choice
mussels offered.

2.4. Data analyses

We examined, separately for each species, the relationship between
mussel shell size and attachment force, incorporating the effect of po-
sition (edge, center) and condition (fouled, clean) in this relationship.
The relationship was tested with an Analysis of Covariance (ANCOVA)
with mussel shell size as covariate, and matrix position (edge vs.
center), epibiont presence (clean vs. fouled), and an interaction term as
explanatory variables, and attachment strength as response variable.
Previous to all analyses, we checked for homogeneity of variance
through visual analysis of residuals, and independence of covariate and
the explanatory variables, i.e. homogeneity of regression slopes.
Analyses were conducted with the libraries “car”, “compute.es”, and
“Effects” in the R-environment (R Development Core Team, R, 2014).

For the byssus selective attachment behavior experiments, we
evaluated the total number of byssal threads produced by each focal
mussel on the two choice-mussels and the experimental substratum
(plastic screen) for both species and habitats. While this measure does
not provide direct estimation of mussel selective choice, it provides
information about the total byssus production of each focal mussel in
the experimental conditions. We then also examined whether focal

mussels had a specific preference (i.e. selective choice behavior) for one
of the two choice mussels offered, determining the choice mussel to
which each focal mussel had attached most byssal threads. For analyses,
we first generated independent contingency tables on the total pro-
portion of choice mussels onto which the focal mussel placed more
byssal threads for each “choice-mussel” experiment (i.e. “alive” versus
“dead”, “fouled” versus “clean”, and “loosely” versus “firmly” at-
tached). Thus, for each focal species (P. purpuratus and M. edulis) and
each habitat type (soft and hard bottom), separately, we evaluated the
selection of conspecific “choice-mussel”. In all cases, we considered the
total of individuals used in each assay for analyses. Independence was
tested with Pearson's Chi-square statistic (α= 0.05) using the library
MASS in the R-environment (R Development Core Team, R, 2014).

3. Results

3.1. Attachment strength of mussels

The relationship between mussel attachment strength and shell size
was variable for both species P. purpuratus and M. edulis, in terms of
epibionts and position of individual mussels from hard- and soft-bottom
habitats (Fig. 2). This is represented in the low variance explained by
the linear models (ANCOVA), which considered these variables for both
species and habitats (see Table 2). For P. purpuratus from the hard-
bottom habitat, about 30% of the variance was explained by the linear
model including barnacle epibionts (fouled, clean), position (edge,
center), an interaction term, and the covariate (mussel shell size)
(Table 2a). In contrast, for P. purpuratus from the soft-bottom habitat,
the variance explained by the linear model was less than 10%
(Table 2a).

In general, there was a positive relationship between shell size and
attachment strength for P. purpuratus on hard-bottom habitats while for
soft-bottom mussels the overall regression slope was slightly negative
(ANCOVA; Table 2a). For M. edulis from the hard-bottom habitat, we
also observed a positive relationship between shell size and attachment
strength (ANCOVA; Table 2b) while for the soft-bottom habitat we
detected no effect of mussel size on attachment strength for this species
(see Regression Coefficients for ANCOVA in Table 2b).

Barnacle epibionts (fouled, clean) and position (edge, center) of the
mussels had variable effects on the relationship between attachment
force and shell size (Fig. 4). In the case of P. purpuratus, we found that
the effect of shell size on attachment strength was lower in mussels
from the edge in both hard- and soft-bottom habitats (i.e. the regression
slope of the model is lower than for mussels from the center, see
Table 2a and Fig. 4). No consistent pattern was observed for fouled
individuals of P. purpuratus in both the soft- and hard-bottom habitat
(Fig. 4), even though there was a statistically significant effect in the
linear model for the soft-bottom habitat (Table 2a). For M. edulis, we
observed that only the interaction between edge position and fouling
was significant and positive in the regression but only for mussels in the
soft-bottom habitat (Fig. 4, Table 2b). This suggests that large and fo-
uled blue mussels from the edge of the mussel bed had higher attach-
ment strength.

3.2. Selective byssus attachment behavior experiments

In general, attachment choices varied between mussel species and
habitats. Perumytilus purpuratus individuals from hard-bottom habitats
preferentially attached byssus on living choice mussels rather than on
dead individuals (Fig. 5a, Table 3). Perumytilus purpuratus from the soft-
bottom habitat also preferred living over dead individuals for attach-
ment (Fig. 5c, Table 3). While P. purpuratus preferred “fouled” (with
epibionts) over “clean” conspecifics in both hard- and soft-bottom ha-
bitats (Fig. 5a and c), there were no significant effects (Table 3). Per-
umytilus purpuratus from hard-bottom habitats tended to prefer loose
over firm conspecifics but differences were not significant (Table 3),
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which could be related to higher number of the total of individual (~46
cases) with no byssus production. The reversed pattern was found for
purple mussels from soft-bottom habitats, which showed a statistically
significant preference for firmly attached conspecifics (Fig. 5a and c,
Table 3).

For hard- and soft-bottom M. edulis, we found no preference of the
focal mussels for either alive or dead conspecifics (see Fig. 5b and d,

Table 3). There was a preference of “fouled” versus “clean” choice
mussels for individuals from hard-bottoms, but differences were not
significant. This pattern was not found for soft-bottom M. edulis, which
showed no difference in preference for “fouled” or “clean” conspecifics
(Fig. 5b and d, Table 3). Even though more M. edulis preferred the
“firm” over the “loose” choice mussels from both hard and soft bottoms
(Fig. 5b and c), no significant differences were observed in the analyses
(Table 3).

Total byssus produced by the focal mussel in the “choice-mussel”
experiments (i.e. the sum of byssus placed onto both choice-mussels and
on the experimental substratum) differed among the independent at-
tachment behavior experiments for both mytilid species (Fig. 6). Per-
umytilus purpuratus from the soft-bottom habitat tended to produce
more total byssus than those from the hard-bottom habitat, although a
clear trend was only observed for the “clean/fouled” experiment
(Fig. 6a). For M. edulis we found a reverse pattern, with individuals
from the hard-bottom habitat producing on average more byssus
threads compared with individuals from the soft-bottom habitat for all
the experiments conducted (Fig. 6b).

4. Discussion

Our results reveal that attachment strength increased with mussel
size in hard-bottom habitats, which was a common pattern for both
mussel species. Furthermore, our study on the attachment patterns and
selective behavior of two mytilid mussels in both hard- and soft-bottom
environments indicated that intraspecific interactions reflect evolu-
tionary adaptations of both species to the respective coastal habitat.
Total byssus production in the selection behavior experiments was
comparatively higher in soft-bottom than in hard-bottom mussels for P.
purpuratus, which contrasts with the pattern observed for M. edulis in
which mussels from the hard-bottom habitat produced more byssus.
Regardless of the source habitat, P. purpuratus preferred living over
dead conspecifics for byssus attachment while selection for living
conspecifics was less marked in M. edulis (and see summary Table 4).
These results suggest species-specific adaptations of mussels, which
correspond to particular habitat requirements (P. purpuratus to hard
bottoms; M. edulis to both soft and hard bottoms). In the context of
these results, it is known that the variety of habitats and the distribu-
tional area where a species is able to establish persisting populations is
a complex expression of its life history traits and evolutionary history
(Brown, 1995). Our findings suggest that mytilid mussels are able to
adjust byssus production (i.e. number and/or thickness) and attach-
ment according to the available attachment substratum. Below, we
discuss the mechanisms determining species-specific patterns and con-
sequences for species' successful adaptation to different environments.

4.1. Attachment strength depends on mussel traits and habitat

The results of our study confirmed that attachment strength in-
creased with mussel size for P. purpuratus and M. edulis inhabiting hard-
bottom habitats. Many other studies had shown that the risk of mussel
dislodgment increases with water flow speed and mussel size (e.g., Hunt
and Scheibling, 2001; Kirk et al., 2007; Denny and Gaylord, 2010) and
decreases with mussel attachment strength to the substratum (e.g.,
Carrington, 2002b; Carrington et al., 2008). In addition, we found that
position in the mussel matrix and epibiont load are also important
factors influencing attachment strength.

Herein, we hypothesized that “edge”-positioned mussels could be
detached more easily compared with “center”-positioned ones, given
that the former have fewer conspecifics for mutual byssus attachment.
This pattern was confirmed for P. purpuratus, because large and “edge”-
positioned purple mussels were more easily detached in both hard- and
soft-bottom habitats. In contrast, wa Kangeri et al. (2014) had sug-
gested that attachment strength is higher in edge-positioned mussels
than in those from the center of the matrix, due to vulnerability for

Table 2
Analyses of Covariance (ANCOVA, type III) on attachment strength (force to dislodge-
ment) measured on hard- and soft-bottom habitats for the mussel species (a) P. purpuratus,
and (b) M. edulis. Summary tables of the regression analyses and multiple regression
coefficients are also shown. Significant values (α = 0.05) are presented in bold.

a) Perumytilus purpuratus

Hard
SV df SS F P
Covariate (size) 1 1564 31.45 1.3 × 10−7

Position (edge, center) (P) 1 1778 35.8 1.27 × 10−6

Condition(fouled, clean) (C) 1 126.3 2.54 0.061
P × C 1 57.6 1.159 0.283
Residual 196 9738.9

Estimate Std. error t-Value P
(Intercept) 4.919 3.891 1.26 0.293
Covariate (size) 0.863 0.157 5.48 1.3 × 10−7

Position_edge −7.206 1.441 −5.00 1.27 × 10−6

Condition_fouled −2.672 1.417 −1.89 0.061
Edge × fouled 2.152 1.998 1.08 0.283
R2 0.318 1.6 × 10−15

Soft
SV df SS F P
Covariate (size) 1 74.41 6.11 0.0139
Position (edge, center) (P) 1 18.33 11.46 0.0319
Condition(fouled, clean) (C) 1 45.21 11.45 0.0008
P × C 1 5.15 4.64 0.2540
Residual 303 119.6 1.31

Estimate Std. error t-Value P
(Intercept) 5.264 1.212 4.34 1.92 × 10−5

Covariate (size) −0.099 0.040 −2.47 0.0139
Position_edge −0.599 0.278 −2.15 0.0008
Condition_fouled −1.155 0.341 −3.38 0.0319
Edge × fouled 0.552 0.483 1.14 0.2541
R2 0.078 0.0005

b) Mytilus edulis
Hard
SV df SS F P
Covariate (size) 1 290.9 7.41 0.007
Position (P) 1 86.2 2.19 0.139
Condition (C) 1 16.3 0.41 0.520
P × C 1 6.9 0.18 0.674
Residual 195 7651.6

Estimate Std. error t-Value P
(Intercept) 6.019 4.524 1.33 0.785
Covariate (size) 0.345 0.127 2.72 0.007
Position_edge 1.858 1.253 1.48 0.139
Condition_fouled −0.806 1.252 −0.64 0.520
Edge × fouled −0.745 1.772 −0.42 0.674
R2 0.057 0.010

Soft
SV df SS F P
Covariate (size) 1 4.60 0.257 0.613
Position 1 18.7 1.050 0.307
Condition 1 57.1 3.208 0.075
P × C 1 118.9 6.687 0.010
Residual 195 3467.5

Estimate Std error t-value P
(Intercept) 7.514 4.079 1.84 0.067
Covariate (size) 0.035 0.068 0.51 0.613
Position_edge −0.926 0.903 −1.03 0.307
Condition_fouled 1.513 0.844 1.79 0.075
Edge × fouled 3.196 1.236 2.59 0.010
R2 0.161 6.1 × 10−7
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Fig. 4. Attachment strength of mussels Perumytilus purpuratus and Mytilus edulis from hard- and soft-bottom habitats in relation to the body length of each mussel; attachment strength
measured as the force required to detach the mussel from the substratum. “Centre” (black circle) and “edge” (gray circle) correspond to position of individual mussels within the matrix.
“Fouled” mussels (triangle) were strongly overgrown with barnacles while “clean” mussels (circle) had no epibionts. Significant parameter estimates from ANCOVA and P-values are
presented, respectively; for further details see Materials and methods section.

Fig. 5. Percentage of mussels that attached the majority of byssal threads to one choice mussel in the byssal attachment behavior experiments; each focal mussel was offered two choice
mussels and the number of byssal threads attached to the choice mussels was counted after an exposure time of 24 h; for further details see Materials and methods section.
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dislodgement caused by hydrodynamic forces such as waves. In partial
agreement with wa Kangeri et al. (2014), herein we observed for M.
edulis from soft-bottom habitats that large, fouled and edge-positioned
mussels tended to have higher attachment strength. Higher attachment
in edge-positioned individuals of M. edulis can have important

consequences to reduce complete mussel bed erosion caused by hy-
drodynamic forces (wa Kangeri et al., 2016), a phenomenon still not
examined in P. purpuratus.

Our results confirmed the importance of epibionts for attachment
strength. Possibly, mussels with epibionts are more exposed to strong

Table 3
Summary table of Pearson's Chi-square test conducted on the total experimental mussel individuals, for testing the independence between “conditions” (i.e. dead versus alive, loose versus
firm, and clean versus fouled) in the “Choice-mussel experiments” for the two habitat types from where the mussels were collected. Significant probability values (α= 0.05) are presented
in bold.

Conspecific condition Perumytilus purpuratus Mytilus edulis

Hard Soft Hard Soft

χ2 P χ2 P χ2 P χ2 P

Alive/dead 9.943 0.0016 4.133 0.0420 1.027 0.3108 0.0415 0.8385
Clean/fouled 1.769 0.1836 0.9710 0.3245 0.125 0.7231 0.243 0.6223
Firm/loose 1.800 0.1797 2.1202 0.0453 1.968 0.1608 2.519 0.1125

Perumytilus purpuratus Mytilus edulisa) b) 

Fig. 6. Box plot of the number of total byssus produced by focal mussels (a: Perumytilus purpuratus, b: Mytilus edulis) in the different “choice-mussel” conditions. The terms “hard” and
“soft” refer to the respective substratum of origin of the mussels. Box corresponds to percentiles 75% (Q3), 50% (median), 25% (Q1). Bars; 2.6-standard deviation; Q3 + 1.5(Q3 − Q1),
Q1 − 1.5(Q3 − Q1).

Table 4
Summary of the main effects obtained in the mussel attachment strength study in the field for the two focal species, considering position (edge, center), epibiont loads (fouled, non-
fouled), and the source habitat type (hard and soft bottom) as main factors. Mean values of total byssus produced by mussel species in all “choice-mussel experiments” are also presented.
(+): positive effect on attachment strength, (−): negative effect, (0): no significant effect.

Habitat Position_Edge Epibionts Shell size Total byssus production (mean ± SE)

Perumytilus purpuratus
Hard (−) (0) (+) 3.8 (± 0.27)
Soft (−) (−) (0) 7.11 (± 0.32)

Mytilus edulis
Hard (0) (0) (+) 8.23 (± 0.38)
Soft (+)a (+)a (+)a 5.62 (± 0.30)

a Denotes interactive effect of factors.
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hydrodynamic stress (i.e. those positioned at the edge of the matrix)
and need to invest much energy in byssus production, which could
explain the higher attachment strength of “fouled” and “edge”-posi-
tioned M. edulis from the soft-bottom habitat in our study (i.e. the
significant fouled × edge interaction term). Witman and Suchanek
(1984) also showed that mussels overgrown with algae are more
strongly attached to the substratum, probably to prevent dislodgement
due to higher flow resistance. In contrast to M. edulis, we found evi-
dence that barnacle epibiont load on P. purpuratus leads to reduced
attachment strength in the soft-bottom habitat (see summary Table 4),
although mussels from this habitat produced more byssus threads in the
byssus attachment behavior experiments (Fig. 6). Since P. purpuratus
more regularly occurs in hard-bottom habitats where it is strongly at-
tached to the substratum (Thiel and Ullrich, 2002; Prado and Castilla,
2006), this species may invest more byssus production in soft-bottom
environments in trying to achieve similar attachment strength as on
rocky shores (see Bell and Gosline, 1997; Carrington et al., 2008; Salas
et al., 2015). The same pattern of higher byssus production in soft-
bottom habitats has been observed for the mussel Brachidontes ro-
driguezii, which attach to coarse sediment available (Salas et al., 2015).
Even though sediment grain size is relatively coarse (~0.6–0.8 mm in
diameter) in the soft-bottom habitat at one of the study sites at Pelluco
in southern Chile, these sediment particles are much too small for P.
purpuratus to provide suitable attachment substratum reducing the risk
of hydrodynamic dislodgement. Thus, higher and selective (i.e. con-
specific attachment) byssus production is expected in this habitat.
Higher byssus production (i.e. number of byssus thread), however,
might not compensate for the low availability of primary attachment
substratum. In the same context, byssus thickness could also confer
higher attachment to mussels in soft-bottom habitats independent of
the number of byssal threads produced by individuals in this environ-
ment (Carrington et al., 2015). However, since we did not quantify
byssus thickness in our study we can only speculate in this context.
Thus, future studies should examine the relationship between number
of byssus produced and its quality (e.g. thickness), which are key traits
determining mussel ability to remain attached under intense hydro-
dynamic stress (Carrington et al., 2015).

4.2. Selective conspecific attachment behavior

Our results showed that P. purpuratus preferred living over dead
conspecifics, which reveals that mussels are capable of distinguishing
between mussels of different attachment quality. Mussels might detect
specific mechanical (e.g. heart beat) or chemical cues related to living
or dead conspecifics for attachment selection (e.g. Kobak, 2001;
Khalaman and Lezin, 2015).

Given that in our study mussel species from hard-bottom habitats
showed no or only weak selection for “firm” versus “loose” conspecifics,
possibly due to low sample size for mussels from hard-bottom habitats,
it is likely that conspecific choice behavior is triggered by more specific
cues. Indeed, mussels are known to react to chemical cues released from
attachment substratum (e.g. Pansch et al., 2009), predators (e.g. Côte,
1995; Reimer and Tedengren, 1997; Kobak et al., 2010), or injured
conspecifics, which is a strategy to reduce mortality risk (e.g., Caro
et al., 2008; Cheung et al., 2009; Garner and Litvaitis, 2013). Thus, it is
possible that mussels avoided dead shells in our experiments because of
chemical cues that remained within the empty shells after removing the
flesh just before starting the experiments. This is in line with previous
studies, which showed that mussels can recognize damaged con-
specifics, and react by increased production of byssus (Cheung et al.,
2009). In this context, studies by Khalaman and Lezin (2015) showed
similar preferential attachment behavior of blue mussels to animal
(‘living’) surfaces compared to inert material suggesting that this spe-
cies can discriminate living organisms from inanimate objects.

Previous studies conducted in soft-bottom habitats (e.g.,
Buschbaum, 2000, 2001) had shown that the absence of primary

attachment substratum (i.e. low predictability for attachment) forces
individuals to attach almost exclusively to conspecifics, and thus a
stronger selectivity in conspecific attachment is expected (Selin and
Vekhova, 2004). Hence, selective conspecific choice could enhance the
probability of survival in less predictable habitats. For example, studies
by Young (1983a) showed low conspecific selectivity in blue mussels
from hard substrata, but they suggested that selectivity should increase
in sedimentary areas (Young, 1983b). Therefore, it was surprising that a
selection for living conspecifics was less marked in M. edulis in our
experiments in soft-bottoms. Despite the missing selectivity for living
individuals, M. edulis reaches comparatively high attachment strength
within the mussel bed matrix in sedimentary environments (Fig. 4).
This finding suggests that also other factors such as the total network
structure of the byssus threads produced by many mussels in a con-
glomerate could be of higher importance for M. edulis bed stability than
the selection behavior of single mussels for living conspecifics and this
should be studied in forthcoming investigations.

Given that “fouled” P. purpuratus from the soft-bottom habitat
showed lower attachment strength, selective choice of “clean” versus
“fouled” conspecifics would be advantageous in this habitat, but this
was not observed in the attachment experiments. This suggests that
selection for clean over fouled conspecifics is a trait not incorporated in
P. purpuratus populations, which would be advantageous for this species
to successfully adapt to less predictable habitats. This coincides with
studies showing higher byssus production as an advantageous strategy
for stressful habitats (i.e. higher predator pressure; Selin and Vekhova,
2004; Garner and Litvaitis, 2013; water current or strong wave action;
e.g., Bell and Gosline, 1997; Carrington et al., 2008; and Carrington
et al., 2015).

In general, our study showed that in mytilid mussels selection for
particular conspecifics might be a common response, which ensures
survival in less predictable habitats. Other studies have related differ-
ences in byssus production and attachment strength of mussels on soft
versus hard surfaces to particular morphological adaptations (Mytilus
coruscus versus Modiolus modiolus; Selin and Vekhova, 2004), and to
environmental stressors such as light gradients (e.g. Dreissena poly-
morpha; Kobak, 2001). However, these traits are also significantly af-
fected by selective choice of mussels (Lezin and Khalaman, 2007;
Khalaman and Lezin, 2015; this study). Conspecific and interspecific
selectivity have been attributed to competition (Khalaman and Lezin,
2015), and to predator presence (Côte, 1995; Reimer and Tedengren,
1997; Lezin and Khalaman, 2007). Thus, conspecific selection seems to
have a role for coexistence with diverse species comprising the benthic
community, and could also be important for the mussels' potential to
colonize novel (i.e. natural or artificial) habitats.

4.3. Concluding remarks

As suggested by our results, in addition to previous studies, at-
tachment strength of mussels within a bed matrix seems to be influ-
enced by the interactive effect of mussel size, position in the mussel
matrix, epibiont load, and substratum choice for attachment. We found
that the preferential byssus attachment to specific conspecific is a
plastic trait in different mytilid mussel populations. Its occurrence can
be driven by effective conspecific cues and habitat type, because habitat
properties seem to influence byssus production and attachment choices
of mussels. Thus, all these attributes/strategies may be important for
mussels to achieve successful adaptation to less predictable (i.e. higher
detachment risk) habitats. These attributes can also have consequences
for persistence of mussel bed structure (e.g. Paine and Levin, 1981; wa
Kangeri et al., 2014), and therefore, also indirectly affect the function of
a mussel bed as an important habitat for a highly diverse community of
associated species (Thiel and Ullrich, 2002; Prado and Castilla, 2006).

Our study thus highlights the importance of determining the role of
conspecific choices in the adaptation of habitat-forming species like
mussels to novel and stressful habitats. These behavioral traits may not
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only determine the persistence of mussel beds in different habitats, but
also their resistance to invaders (Buschbaum et al., 2016) or their own
invasion success as shown in the Mediterranean mytilid mussel M.
galloprovincialis (Branch and Steffani, 2004).

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.jembe.2017.09.009.
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