GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Copernicus Publications (EGU)  (34)
  • Springer  (31)
  • Nature Research  (11)
  • Wuppertal : Wuppertal Institut für Klima, Umwelt, Energie  (10)
  • Oxford University Press  (7)
  • 2020-2024  (93)
Publikationsart
Verlag/Herausgeber
Sprache
Erscheinungszeitraum
Jahr
  • 1
    Publikationsdatum: 2024-04-24
    Beschreibung: Groundwater is a vital resource for humans, non-human species, and ecosystems. It has allowed the development of human evolution and civilizations throughout history (e.g., Wittfogel 1956, Tempelhoff et al. 2009, Cuthbert and Ashley 2014, Roberts 2014). However, it faces multiple potential threats that make it vulnerable and fragile. Climate change and human activities are the primary causes that have led to water cycle disruptions, particularly a decline in groundwater quality and quantity (e.g., Gleeson et al. 2020, Chaminé et al. 2022, Richardson et al. 2023). Climate variability has induced droughts, floods, and other extreme weather conditions, significantly impacting groundwater in many regions. Meanwhile, human activities such as over-abstraction, ground contamination, deforestation, land-use change, and other anthropogenic pressures have further compromised groundwater status. Nonetheless, groundwater continues to fulfill water demands in many regions or during specific periods. Therefore, concerted efforts are imperative to ensure its sustainability. So, conservation practices and nature-based solutions must be adopted to efficiently manage groundwater and shield it from additional potential hazards or risks (e.g., contamination, pollution, or over-abstraction). Failure to act quickly can result in the loss of this critical resource, with severe consequences for the economy, society, and ecosystems. From this perspective, it is imperative to prioritize actions underscored by technical-scientific integrity, environmental responsibility, societal sensitivity, and ethical practices.
    Beschreibung: Published
    Beschreibung: 97
    Beschreibung: OS: Terza missione
    Beschreibung: OSA5: Energia e georisorse
    Beschreibung: JCR Journal
    Schlagwort(e): groundwater ; resource management ; sustainability ; hydrogeoethics ; geoethics ; societal well-being ; 05.03. Educational, History of Science, Public Issues ; 03.02. Hydrology ; 04.04. Geology ; 05.09. Miscellaneous
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    facet.materialart.
    Unbekannt
    Springer
    Publikationsdatum: 2024-02-07
    Beschreibung: Contains various examples and applications of visual data exploration and computational approaches. Includes a framework and its application for the evaluation of the success of research projects Provides in depth examples of SMART monitoring and data FAIRness
    Materialart: Book , NonPeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2023-02-08
    Beschreibung: Reconstructions of global hydroclimate during the Common Era (CE; the past ∼2000 years) are important for providing context for current and future global environmental change. Stable isotope ratios in water are quantitative indicators of hydroclimate on regional to global scales, and these signals are encoded in a wide range of natural geologic archives. Here we present the Iso2k database, a global compilation of previously published datasets from a variety of natural archives that record the stable oxygen (δ18O) or hydrogen (δ2H) isotopic compositions of environmental waters, which reflect hydroclimate changes over the CE. The Iso2k database contains 759 isotope records from the terrestrial and marine realms, including glacier and ground ice (210); speleothems (68); corals, sclerosponges, and mollusks (143); wood (81); lake sediments and other terrestrial sediments (e.g., loess) (158); and marine sediments (99). Individual datasets have temporal resolutions ranging from sub-annual to centennial and include chronological data where available. A fundamental feature of the database is its comprehensive metadata, which will assist both experts and nonexperts in the interpretation of each record and in data synthesis. Key metadata fields have standardized vocabularies to facilitate comparisons across diverse archives and with climate-model-simulated fields. This is the first global-scale collection of water isotope proxy records from multiple types of geological and biological archives. It is suitable for evaluating hydroclimate processes through time and space using large-scale synthesis, model–data intercomparison and (paleo)data assimilation. The Iso2k database is available for download at https://doi.org/10.25921/57j8-vs18 (Konecky and McKay, 2020) and is also accessible via the NOAA/WDS Paleo Data landing page: https://www.ncdc.noaa.gov/paleo/study/29593 (last access: 30 July 2020).
    Materialart: Article , PeerReviewed
    Format: text
    Format: archive
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2023-02-08
    Beschreibung: Nitrous oxide (N2O), like carbon dioxide, is a long-lived greenhouse gas that accumulates in the atmosphere. Over the past 150 years, increasing atmospheric N2O concentrations have contributed to stratospheric ozone depletion1 and climate change2, with the current rate of increase estimated at 2 per cent per decade. Existing national inventories do not provide a full picture of N2O emissions, owing to their omission of natural sources and limitations in methodology for attributing anthropogenic sources. Here we present a global N2O inventory that incorporates both natural and anthropogenic sources and accounts for the interaction between nitrogen additions and the biochemical processes that control N2O emissions. We use bottom-up (inventory, statistical extrapolation of flux measurements, process-based land and ocean modelling) and top-down (atmospheric inversion) approaches to provide a comprehensive quantification of global N2O sources and sinks resulting from 21 natural and human sectors between 1980 and 2016. Global N2O emissions were 17.0 (minimum–maximum estimates: 12.2–23.5) teragrams of nitrogen per year (bottom-up) and 16.9 (15.9–17.7) teragrams of nitrogen per year (top-down) between 2007 and 2016. Global human-induced emissions, which are dominated by nitrogen additions to croplands, increased by 30% over the past four decades to 7.3 (4.2–11.4) teragrams of nitrogen per year. This increase was mainly responsible for the growth in the atmospheric burden. Our findings point to growing N2O emissions in emerging economies—particularly Brazil, China and India. Analysis of process-based model estimates reveals an emerging N2O–climate feedback resulting from interactions between nitrogen additions and climate change. The recent growth in N2O emissions exceeds some of the highest projected emission scenarios3,4, underscoring the urgency to mitigate N2O emissions.
    Materialart: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2024-02-07
    Beschreibung: The neritic-oceanic squid Illex argentinus supports one of the largest fisheries in the Southwest Atlantic. It is characterized by extensive migrations across the Patagonian Shelf and complex population structure comprising distinct seasonal spawning groups. To address uncertainty as to the demographic independence of these groups that may compromise sustainable management, a multidisciplinary approach was applied integrating statolith ageing with genome-wide single-nucleotide polymorphism (SNP) analysis. To obtain complete coverage of the spawning groups, sampling was carried out at multiple times during the 2020 fishing season and covered a large proportion of the species' range across the Patagonian Shelf. Statolith and microstructure analysis revealed three distinct seasonal spawning groups of winter-, spring-, and summer-hatched individuals. Subgroups were identified within each seasonal group, with statolith microstructure indicating differences in environmental conditions during ontogeny. Analysis of 〉10 000 SNPs reported no evidence of neutral or non-neutral genetic structure among the various groups. These findings indicate that I. argentinus across the Patagonian Shelf belong to one genetic population and a collaborative management strategy involving international stakeholders is required. The connectivity among spawning groups may represent a "bet-hedging" mechanism important for population resilience.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2024-02-07
    Beschreibung: The development and physiology of herring larvae were monitored for individuals reared in control and combined warming-acidification crossed with different food quality treatments. The experiment revealed that warming and acidification triggers a stress response at the molecular level and decrease herring larvae size-at-stage. Global change puts coastal systems under pressure, affecting the ecology and physiology of marine organisms. In particular, fish larvae are sensitive to environmental conditions, and their fitness is an important determinant of fish stock recruitment and fluctuations. To assess the combined effects of warming, acidification and change in food quality, herring larvae were reared in a control scenario (11 & DEG;C*pH 8.0) and a scenario predicted for 2100 (14 & DEG;C*pH 7.6) crossed with two feeding treatments (enriched in phosphorus and docosahexaenoic acid or not). The experiment lasted from hatching to the beginning of the post-flexion stage (i.e. all fins present) corresponding to 47 days post-hatch (dph) at 14 & DEG;C and 60 dph at 11 & DEG;C. Length and stage development were monitored throughout the experiment and the expression of genes involved in growth, metabolic pathways and stress responses were analysed for stage 3 larvae (flexion of the notochord). Although the growth rate was unaffected by acidification and temperature changes, the development was accelerated in the 2100 scenario, where larvae reached the last developmental stage at a smaller size (-8%). We observed no mortality related to treatments and no effect of food quality on the development of herring larvae. However, gene expression analyses revealed that heat shock transcripts expression was higher in the warmer and more acidic treatment. Our findings suggest that the predicted warming and acidification environment are stressful for herring larvae, inducing a decrease in size-at-stage at a precise period of ontogeny. This could either negatively affect survival and recruitment via the extension of the predation window or positively increase the survival by reducing the larval stage duration.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2024-02-07
    Beschreibung: Planktonic Foraminifera are unique paleo-environmental indicators through their excellent fossil record in ocean sediments. Their distribution and diversity are affected by different environmental factors including anthropogenically forced ocean and climate change. Until now, historical changes in their distribution have not been fully assessed at the global scale. Here we present the FORCIS (Foraminifera Response to Climatic Stress) database on foraminiferal species diversity and distribution in the global ocean from 1910 until 2018 including published and unpublished data. The FORCIS database includes data collected using plankton tows, continuous plankton recorder, sediment traps and plankton pump, and contains similar to 22,000, similar to 157,000, similar to 9,000, similar to 400 subsamples, respectively (one single plankton aliquot collected within a depth range, time interval, size fraction range, at a single location) from each category. Our database provides a perspective of the distribution patterns of planktonic Foraminifera in the global ocean on large spatial (regional to basin scale, and at the vertical scale), and temporal (seasonal to interdecadal) scales over the past century.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2024-02-08
    Beschreibung: Riverine nutrient export is an important process in marine coastal biogeochemistry and also impacts global marine biology. The nitrogen cycle is a key player here. Internal feedbacks regulate not only nitrogen distribution, but also primary production and thereby oxygen concentrations. Phosphorus is another essential nutrient and interacts with the nitrogen cycle via different feedback mechanisms. After a previous study of the marine nitrogen cycle response to riverine nitrogen supply, we here additionally include phosphorus from river export with different phosphorus burial scenarios and study the impact of phosphorus alone and in combination with nitrogen in a global 3-D ocean biogeochemistry model. Again, we analyse the effects on near coastal and open ocean biogeochemistry. We find that the addition of bio-available riverine phosphorus alone or together with nitrogen affects marine biology on millennial timescales more than riverine nitrogen alone. Biogeochemical feedbacks in the marine nitrogen cycle are strongly influenced by the additional phosphorus. Where bio-available phosphorus is increased by river input, nitrogen concentrations increase as well, except for regions with high denitrification rates. High phosphorus burial rates decrease biological production significantly. Globally, riverine phosphorus leads to elevated primary production rates in the coastal and open oceans.
    Materialart: Article , NonPeerReviewed , info:eu-repo/semantics/article
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2024-01-18
    Beschreibung: The project "Plastic Credits - Financing the Transition to the Global Circular Economy" supports the implementation of a waste management structure in India's rural regions. By that it aims to improve the current waste collection and treatment structures in the pilot regions Goa, Maharashtra, and Kerala. Herein, the project focuses on low value plastics (LVP), and especially multi-layer plastics (MLP), that have no market value. In order to analyze the environmental impacts of the project, an Environmental Impact Assessment (EIA) was conducted. The considered environmental components comprise: greenhouse gas emissions, usage of primary resources, impacts on marine and terrestrial wildlife, standard of living, and economic costs.
    Schlagwort(e): ddc:330
    Repository-Name: Wuppertal Institut für Klima, Umwelt, Energie
    Sprache: Englisch
    Materialart: report , doc-type:report
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2024-06-18
    Beschreibung: Spatial predictions of total organic carbon (TOC) concentrations and stocks are crucial for understanding marine sediments’ role as a significant carbon sink in the global carbon cycle. In this study, we present a geospatial prediction of TOC concentrations and stocks at a 5 x 5 arc minute grid scale, using a deep learning model — a novel machine learning approach based on a new compilation of over 22,000 global TOC measurements and a new set of predictors, such as seafloor lithologies, grain size distribution, and an alpha-chlorophyll satellite data. In our study, we compared the predictions and discuss the limitations from various machine learning methods. Our findings reveal that the neural network approach outperforms methods such as k Nearest Neighbors and random forests, which tend to overfit to the training data, especially in highly heterogeneous and complex geological settings. We provide estimates of mean TOC concentrations and total carbon stock in both continental shelves and deep sea settings across various marine regions and oceans. Our model suggests that the upper 10 cm of oceanic sediments harbors approximately 171 Pg of TOC stock and has a mean TOC concentration of 0.68 %. Furthermore, we introduce a standardized methodology for quantifying predictive uncertainty using Monte Carlo dropout and present a map of information gain, that measures the expected increase in model knowledge achieved through in-situ sampling at specific locations which is pivotal for sampling strategy planning.
    Materialart: Article , NonPeerReviewed , info:eu-repo/semantics/article
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...