GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-08-03
    Description: The area around the Antarctic Peninsula (AP) is facing rapid climatic and environmental changes, with so far unknown impacts on the benthic microbial communities of the continental shelves. In this study, we investigated the impact of contrasting sea ice cover on microbial community compositions in surface sediments from five stations along the eastern shelf of the AP using 16S ribosomal RNA (rRNA) gene sequencing. Redox conditions in sediments with long ice-free periods are characterized by a prevailing ferruginous zone, whereas a comparatively broad upper oxic zone is present at the heavily ice-covered station. Low ice cover stations were highly dominated by microbial communities of Desulfobacterota (mostly Sva1033, Desulfobacteria, and Desulfobulbia), Myxococcota, and Sva0485, whereas Gammaproteobacteria, Alphaproteobacteria, Bacteroidota, and NB1-j prevail at the heavy ice cover station. In the ferruginous zone, Sva1033 was the dominant member of Desulfuromonadales for all stations and, along with eleven other taxa, showed significant positive correlations with dissolved Fe concentrations, suggesting a significant role in iron reduction or an ecological relationship with iron reducers. Our results indicate that sea ice cover and its effect on organic carbon fluxes are the major drivers for changes in benthic microbial communities, favoring potential iron reducers at stations with increased organic matter fluxes.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-04-22
    Description: In this study, we made use of a regional oak tree-ring network from six stands that cover the northern Moldavian Plateau (eastern Europe) to analyze how different tree ring parameters (i.e., early wood tree-ring width, late wood tree-ring width, and total tree-ring width) of Quercus sp. are influenced by the occurrence of extreme climatic events (e.g., long-lasting drought events). In order to explore the influence of extreme hydroclimatic events on tree ring width, we have selected each of the six most extreme positive and negative years of tree growth and addressed the seasonal cycle of tree growth in comparison with the main climatic parameters, then evaluated both the current and lagged consequences of extreme hydroclimatic events on tree ring width and the capacity of trees to recover. Our results indicate that the variability of oak tree ring width from the Moldavian Plateau is mainly influenced by the availability of water resources, and that an important limiting growth factor for Quercus sp. is the occurrence of long-lasting drought events, e.g., at least two years in a row with severe drought conditions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-05-07
    Description: The Arctic is experiencing the greatest increase in air temperature on Earth. This significant climatic change is leading to a significant positive trend of increasing wave heights and greater coastal erosion. This in turn effects local economies and ecosystems. Increasing wave energy is one of the main drivers of this alarming trend. However, the data on spatial and temporal patterns of wave heights in the Arctic are either coarse, interpolated or limited to point measurements. The aim of this study is to overcome this shortcoming by using remote sensing data. In this study, the Synthetic Aperture Radar (SAR) satellite TerraSAR-X (TS-X) and TanDEM-X (TD-X) imagery are used to obtain sea state information with a high spatial resolution in Arctic nearshore waters in the Canadian Beaufort Sea. From the entire archive of the TS-X/TD-X StripMap mode with coverage around 30 km × 50 km acquired between 2009 and 2020 around Herschel Island, Qikiqtaruk (HIQ), all the ice-free scenes were processed. The resulting dataset of 175 collocated scenes was used to map the significant wave height ((Formula presented.)) and to link spatial and temporal patterns to local coastal processes. Sea state parameters are estimated in raster format with a 600 m step using the empirical algorithm CWAVE_EX. The statistics of the (Formula presented.) were aggregated according to spatial variability, seasonality and wind conditions. The results show that the spatial wave climate is clearly related to the dominant wind regime and seasonality. For instance, the aggregation of all the scenes recorded in July between 2009 and 2020 results in an average of 0.82 m (Formula presented.), while in October the average (Formula presented.) is almost 0.40 m higher. The analysis by wind direction shows that fetch length and wind speed are likely the most important variables influencing the spatial variability. A larger fetch under NW conditions results in a mean wave height of 0.92 m, while waves generated under ESE conditions are lower at 0.81 m on average.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...