GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • GEOMAR Catalogue / E-Books
  • Journals
  • Articles  (10)
  • OceanRep  (17)
  • Wiley  (9)
  • Dessau-Roßlau : Umweltbundesamt  (6)
  • Nature Research  (6)
  • GEOMAR  (2)
  • GFZ German Research Centre for Geosciences  (2)
  • Springer
  • 2015-2019  (27)
  • 2019  (27)
  • 1
    Publication Date: 2022-01-31
    Description: Ecological impact of global change is generated by multiple synchronous or asynchronous drivers which interact with each other and with intraspecific variability of sensitivities. In three near-natural experiments, we explored response correlations of full-sibling germling families of the seaweed Fucus vesiculosus towards four global change drivers: elevated CO2 (ocean acidification, OA), ocean warming (OW), combined OA and warming (OAW), nutrient enrichment and hypoxic upwelling. Among families, performance responses to OA and OW as well as to OAW and nutrient enrichment correlated positively whereas performance responses to OAW and hypoxia anti-correlated. This indicates (i) that families robust to one of the three drivers (OA, OW, nutrients) will also not suffer from the two other shifts, and vice versa and (ii) families benefitting from OAW will more easily succumb to hypoxia. Our results may imply that selection under either OA, OW or eutrophication would enhance performance under the other two drivers but simultaneously render the population more susceptible to hypoxia. We conclude that intraspecific response correlations have a high potential to boost or hinder adaptation to multifactorial global change scenarios.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    GEOMAR
    In:  GEOMAR, Kiel, Germany, 80 pp.
    Publication Date: 2021-02-25
    Description: Abstract Legal requirement in Europe asks for Ecosystem-Based Fisheries Management (EBFM) in European seas, including considerations of trophic interactions and minimization of negative impacts of fishing on food webs and ecosystem functioning. Focusing on the interaction between fisheries and ecosystem components, the trophic model presented here shows for the first time the “big picture” of the western Baltic Sea (WBS) food web by quantifying structure and flows between all trophic elements and the impact of fisheries that were and are active in the area, based on best available recent data. Model results show that fishing pressures exerted on the WBS since the early nineties of the past century forces not only top predators such as harbour porpoises and seals but also cod and other demersal fish to heavily compete for fish as food and to cover their dietary needs by shifting to organisms lower in the trophic web, mainly to benthic macrofauna and / or search for suitable prey in adjacent ecosystems such as Kattegat, Skagerrak, central Baltic Sea and North Sea. While common sense implementations of EBFM have been proposed, such as fishing all stocks below Fmsy and reducing fishing pressure even further for forage fish such as herring and sprat, few studies compared such fishing to alternative scenarios. Different options for EBFM, with regards to recovery of depleted stocks and sustainable future catches, are presented here based on the WBS ecosystem model, the legal framework given by the new Common Fisheries Policy (CFP) and the Marine Strategy Framework Directive (MSFD) of the European Union. The model explores four legally valid future fishery scenarios: 1) business as usual, 2) maximum sustainable fishing (F = Fmsy), 3) half of Fmsy, and 4) EBFM with F = 0.5 Fmsy for forage fish and F = 0.8 Fmsy for other fish. In addition, a “No-fishing” scenario demonstrates, that neither individual stocks nor the whole system would collapse when all fishing activities from 2017 on would cease. Simulations show that “Business as usual” would perpetuate low 2016 catches from depleted stocks in an unstable ecosystem where endangered species may be lost. In contrast, an “EBFM” scenario - with herring and sprat fished at 0.5 Fmsy level and cod and other stocks fished at 0.8 Fmsy level - allows the recovery of all stocks with strongly increased catches close to the maximum (at Fmsy) for cod and flatfish and catches similar to the 2016 level for herring and sprat but with strongly reduced fishing effort. Model and methodology presented here are considered suitable to assess MSFD Criterion D4C2 in the WBS.
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-02-12
    Description: The Collisional Orogeny in the Scandinavian Caledonides (COSC) scientific drilling project focuses on mountain building processes in a major mid‐Paleozoic orogen in western Scandinavia and its comparison with modern analogues. The project investigates a subduction‐generated complex (Seve Nappes) and how these in part under ultra‐high pressure conditions metamorphosed outer continental margin and continent‐ocean transition zones (COT) assemblages were emplaced onto the Baltoscandian platform and there influenced the underlying allochthons and the basement in a section provided by two fully cored 2.5 km deep drill holes. This operational report concerns the first drill hole, COSC‐1 (ICDP 5054‐1‐A), drilled from early May to late August 2014. It sampled a thick section of the lower part of the Seve Complex and was planned to penetrate its basal thrust zone into the underlying lower grade metamorphosed allochthon. The drill hole reached a depth of 2495.8 m and nearly 100 % core recovery was achieved. Although planning was based on existing geological mapping and new high‐resolution seismic surveys, the drilling resulted in some surprises: the Lower Seve Nappe proved to be composed of rather homogenous gneisses, with only subordinate mafic bodies and its basal thrust zone was unexpectedly thick (〉 800 m). The drill hole did not penetrate the bottom of the thrust zone. However, lower grade metasedimentary rocks were encountered in the lowermost part of the drill hole together with garnetiferous mylonites tens of metres thick. The tectonostratigraphic position is still unclear and geological and geophysical interpretations are under revision. The compact gneisses host only 8 fluid conducting zones of limited transmissivity between 300 m and total depth. Downhole measurements suggest an uncorrected average geothermal gradient of ~20°C/km. The drill core was documented on‐site and XRF scanned off site. During various stages of the drilling, the borehole was documented by comprehensive downhole logging. This operational report provides an overview over the COSC‐1 operations from drilling preparations to the sampling party and describes the available datasets and sample material.
    Language: English
    Type: info:eu-repo/semantics/report
    Format: application/pdf
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-01-31
    Description: Gelatinous zooplankton (Cnidaria, Ctenophora, and Urochordata, namely, Thaliacea) are ubiquitous members of plankton communities linking primary production to higher trophic levels and the deep ocean by serving as food and transferring “jelly‐carbon” (jelly‐C) upon bloom collapse. Global biomass within the upper 200 m reaches 0.038 Pg C, which, with a 2–12 months life span, serves as the lower limit for annual jelly‐C production. Using over 90,000 data points from 1934 to 2011 from the Jellyfish Database Initiative as an indication of global biomass (JeDI: http://jedi.nceas.ucsb.edu, http://www.bco‐dmo.org/dataset/526852), upper ocean jelly‐C biomass and production estimates, organism vertical migration, jelly‐C sinking rates, and water column temperature profiles from GLODAPv2, we quantitatively estimate jelly‐C transfer efficiency based on Longhurst Provinces. From the upper 200 m production estimate of 0.038 Pg C year−1, 59–72% reaches 500 m, 46–54% reaches 1,000 m, 43–48% reaches 2,000 m, 32–40% reaches 3,000 m, and 25–33% reaches 4,500 m. This translates into ~0.03, 0.02, 0.01, and 0.01 Pg C year−1, transferred down to 500, 1,000, 2,000, and 4,500 m, respectively. Jelly‐C fluxes and transfer efficiencies can occasionally exceed phytodetrital‐based sediment trap estimates in localized open ocean and continental shelves areas under large gelatinous blooms or jelly‐C mass deposition events, but this remains ephemeral and transient in nature. This transfer of fast and permanently exported carbon reaching the ocean interior via jelly‐C constitutes an important component of the global biological soft‐tissue pump, and should be addressed in ocean biogeochemical models, in particular, at the local and regional scale.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-02-18
    Description: Today more than 45 % of all energy-related CO2 emissions come from burning coal. Thus, reducing CO2 emissions from coal use is a necessity for reaching the targets of the Paris Agreement. This will not only pose challenges for coal consumers (restructuring of the energy system), but also for countries whose economy is strongly depending on the production of coal. This paper examines the role of coal in three countries, which are or were in recent years among the top coal exporters: Indonesia, Colombia and Vietnam. Understanding challenges and possible transition pathways in these countries will help to develop global strategies to reduce CO2 emissions from coal in the short to mid-term.
    Keywords: ddc:320
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: report , doc-type:report
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-01-31
    Description: The enactment of the Water Framework Directive (WFD) initiated scientific efforts to develop reliable methods for comparing prevailing lake conditions against reference (or nonimpaired) states, using the state of a set biological elements. Drawing a distinction between impaired and natural conditions can be a challenging exercise. Another important aspect is to ensure that water quality assessment is comparable among the different Member States. In this context, the present paper offers a constructive critique of the practices followed during the WFD implementation in Greece by pinpointing methodological weaknesses and knowledge gaps that undermine our ability to classify the ecological quality of Greek lakes. One of the pillars of WDF is a valid lake typology that sets ecological standards transcending geographic regions and national boundaries. The national typology of Greek lakes has failed to take into account essential components. WFD compliance assessments based on the descriptions of phytoplankton communities are oversimplified and as such should be revisited. Exclusion of most chroococcal species from the analysis of cyanobacteria biovolume in Greek lakes/reservoirs and most reservoirs in Spain, Portugal, and Cyprus is not consistent with the distribution of those taxa in lakes. Similarly, the total biovolume reference values and the indices used in classification schemes reflect misunderstandings of WFD core principles. This hampers the comparability of ecological status across Europe and leads to quality standards that are too relaxed to provide an efficient target for the protection of Greek/transboundary lakes such as the ancient Lake Megali Prespa.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-01-31
    Description: In order to understand the effect of global change on marine fishes, it is imperative to quantify the effects on fundamental parameters such as survival and growth. Larval survival and recruitment of the Atlantic cod (Gadus morhua) were found to be heavily impaired by end-of-century levels of ocean acidification. Here, we analysed larval growth among 35–36 days old surviving larvae, along with organ development and ossification of the skeleton. We combined CO2treatments (ambient: 503 µatm, elevated: 1,179 µatm) with food availability in order to evaluate the effect of energy limitation in addition to the ocean acidification stressor. As expected, larval size (as a proxy for growth) and skeletogenesis were positively affected by high food availability. We found significant interactions between acidification and food availability. Larvae fed ad libitum showed little difference in growth and skeletogenesis due to the CO2 treatment. Larvae under energy limitation were significantly larger and had further developed skeletal structures in the elevated CO2 treatment compared to the ambient CO2 treatment. However, the elevated CO2 group revealed impairments in critically important organs, such as the liver, and had comparatively smaller functional gills indicating a mismatch between size and function. It is therefore likely that individual larvae that had survived acidification treatments will suffer from impairments later during ontogeny. Our study highlights important allocation trade-off between growth and organ development, which is critically important to interpret acidification effects on early life stages of fish.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-01
    Description: The Weddell Gyre (WG) is one of the main oceanographic features of the Southern Ocean south of the Antarctic Circumpolar Current which plays an influential role in global ocean circulation as well as gas exchange with the atmosphere. We review the state‐of‐the art knowledge concerning the WG from an interdisciplinary perspective, uncovering critical aspects needed to understand this system's role in shaping the future evolution of oceanic heat and carbon uptake over the next decades. The main limitations in our knowledge are related to the conditions in this extreme and remote environment, where the polar night, very low air temperatures and presence of sea ice year‐round hamper field and remotely sensed measurements. We highlight the importance of winter and under‐ice conditions in the southern WG, the role that new technology will play to overcome present‐day sampling limitations, the importance of the WG connectivity to the low‐latitude oceans and atmosphere, and the expected intensification of the WG circulation as the westerly winds intensify. Greater international cooperation is needed to define key sampling locations that can be visited by any research vessel in the region. Existing transects sampled since the 1980s along the Prime Meridian and along an East‐West section at ~62°S should be maintained with regularity to provide answers to the relevant questions. This approach will provide long‐term data to determine trends and will improve representation of processes for regional, Antarctic‐wide and global modeling efforts – thereby enhancing predictions of the WG in global ocean circulation and climate.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-01-31
    Description: Distinct differences were observed in geochemical signatures in sediments from two sites drilled in the upper plate of the Costa Rica margin during Integrated Ocean Drilling Program (IODP) Expedition 334. The upper 80 m at Site U1379, located on the outer shelf, show pore water non‐steady state conditions characteristic of a declining methane flux. These contrast with analyses of the upper sediment layers at the middle slope site (U1378) that reflect steady state conditions. Distinct carbonate‐rich horizons up to 11 meters thick were recovered between 63 and 310 meters below seafloor at Site U1379 but were not found at Site U1378. The carbonates and dissolved inorganic carbon from Site U1379 have a depleted carbon stable isotope signal (up to ‐25‰) that indicates anaerobic methane oxidation. This inference is further supported by distinct δ34S‐pyrite and magnetic susceptibility records that reveal fluctuations of the sulfate‐methane transition in response to methane flux variations. Tectonic reconstructions of this margin document a marked subsidence event after arrival of the Cocos Ridge, 2.2 ± 0.2 million years ago (Ma), followed by increased sedimentation rates and uplift. As the seafloor at Site U1379 rose from ~2000 m to the present water depth of ~126 m, the site moved out of the gas hydrate stability zone (GHSZ) at ~1.1 Ma, triggering upward methane advection, methane oxidation, and the onset of massive carbonate formation. Younger carbonate occurrences and the non‐steady state pore profiles at Site U1379 reflect continued episodic venting likely modulated by changes in the underlying methane reservoir.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-03-09
    Description: The Weddell Gyre (WG) is one of the main oceanographic features of the Southern Ocean south of the Antarctic Circumpolar Current which plays an influential role in global ocean circulation as well as gas exchange with the atmosphere. We review the state‐of‐the art knowledge concerning the WG from an interdisciplinary perspective, uncovering critical aspects needed to understand this system's role in shaping the future evolution of oceanic heat and carbon uptake over the next decades. The main limitations in our knowledge are related to the conditions in this extreme and remote environment, where the polar night, very low air temperatures, and presence of sea ice year‐round hamper field and remotely sensed measurements. We highlight the importance of winter and under‐ice conditions in the southern WG, the role that new technology will play to overcome present‐day sampling limitations, the importance of the WG connectivity to the low‐latitude oceans and atmosphere, and the expected intensification of the WG circulation as the westerly winds intensify. Greater international cooperation is needed to define key sampling locations that can be visited by any research vessel in the region. Existing transects sampled since the 1980s along the Prime Meridian and along an East‐West section at ~62°S should be maintained with regularity to provide answers to the relevant questions. This approach will provide long‐term data to determine trends and will improve representation of processes for regional, Antarctic‐wide, and global modeling efforts—thereby enhancing predictions of the WG in global ocean circulation and climate.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...