GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-02-08
    Description: Invasive ecosystem engineers (IEE) are potentially one of the most influential types of biological invaders. They are expected to have extensive ecological impacts by altering the physical–chemical structure of ecosystems, thereby changing the rules of existence for a broad range of resident biota. To test the generality of this expectation, we used a global systematic review and meta-analysis to examine IEE effects on the abundance of individual species and communities, biodiversity (using several indices) and ecosystem functions, focusing on marine and estuarine environments. We found that IEE had a significant effect (positive and negative) in most studies testing impacts on individual species, but the overall (cumulative) effect size was small and negative. Many individual studies showed strong IEE effects on community abundance and diversity, but the direction of effects was variable, leading to statistically non-significant overall effects in most categories. In contrast, there was a strong overall effect on most ecosystem functions we examined. IEE negatively affected metabolic functions and primary production, but positively affected nutrient flux, sedimentation and decomposition. We use the results to develop a conceptual model by highlighting pathways whereby IEE impact communities and ecosystem functions, and identify several sources of research bias in the IEE-related invasion literature. Only a few of the studies simultaneously quantified IEE effects on community/diversity and ecosystem functions. Therefore, understanding how IEE may alter biodiversity–ecosystem function relationships should be a primary focus of future studies of invasion biology. Moreover, the clear effects of IEE on ecosystem functions detected in our study suggest that scientists and environmental managers ought to examine how the effects of IEE might be manifested in the services that marine ecosystems provide to humans.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-02-08
    Description: There has been increasing interest in algae-based bioassessment, particularly, trait-based approaches are increasingly suggested. However, the main drivers, especially the contribution of hydrological variables, of species composition, trait composition, and beta diversity of algae communities are less studied. To link species and trait composition to multiple factors (i.e., hydrological variables, local environmental variables, and spatial factors) that potentially control species occurrence/abundance and to determine their relative roles in shaping species composition, trait composition, and beta diversities of pelagic algae communities, samples were collected from a German lowland catchment, where a well-proven ecohydrological modeling enabled to predict long-term discharges at each sampling site. Both trait and species composition showed significant correlations with hydrological, environmental, and spatial variables, and variation partitioning revealed that the hydrological and local environmental variables outperformed spatial variables. A higher variation of trait composition (57.0%) than species composition (37.5%) could be explained by abiotic factors. Mantel tests showed that both species and trait-based beta diversities were mostly related to hydrological and environmental heterogeneity with hydrological contributing more than environmental variables, while purely spatial impact was less important. Our findings revealed the relative importance of hydrological variables in shaping pelagic algae community and their spatial patterns of beta diversities, emphasizing the need to include hydrological variables in long-term biomonitoring campaigns and biodiversity conservation or restoration. A key implication for biodiversity conservation was that maintaining the instream flow regime and keeping various habitats among rivers are of vital importance. However, further investigations at multispatial and temporal scales are greatly needed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-02-08
    Description: Marine life is controlled by multiple physical and chemical drivers and by diverse ecological processes. Many of these oceanic properties are being altered by climate change and other anthropogenic pressures. Hence, identifying the influences of multifaceted ocean change, from local to global scales, is a complex task. To guide policy-making and make projections of the future of the marine biosphere, it is essential to understand biological responses at physiological, evolutionary and ecological levels. Here, we contrast and compare different approaches to multiple driver experiments that aim to elucidate biological responses to a complex matrix of ocean global change. We present the benefits and the challenges of each approach with a focus on marine research, and guidelines to navigate through these different categories to help identify strategies that might best address research questions in fundamental physiology, experimental evolutionary biology and community ecology. Our review reveals that the field of multiple driver research is being pulled in complementary directions: the need for reductionist approaches to obtain process-oriented, mechanistic understanding and a requirement to quantify responses to projected future scenarios of ocean change. We conclude the review with recommendations on how best to align different experimental approaches to contribute fundamental information needed for science-based policy formulation.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Transactions of the Institute of British Geographers, Wiley, 43(1), pp. 61-78, ISSN: 0020-2754
    Publication Date: 2024-02-07
    Description: The Pacific region of Colombia, like many sparsely populated places in developing countries, has been imagined as empty in social terms, and yet full in terms of natural resources and biodiversity. These imaginaries have enabled the creation of frontiers of land and sea control, where the state as well as private and illegal actors have historically dispossessed Afro-descendant and indigenous peoples. This paper contributes to the understanding of territorialisation in the oceans, where political and legal framings of the sea as an open-access public good have neglected the existence of marine social processes. It shows how Afro-descendant communities and non-state actors are required to use the language of resources, rather than socio-cultural attachment, to negotiate state marine territorialisation processes. Drawing on a case study on the Pacific coast of Colombia, we demonstrate that Afro-descendant communities hold local aquatic epistemologies, in which knowledge and the production of space are entangled in fluid and volumetric spatio-temporal dynamics. However, despite the social importance of aquatic environments, they were excluded from Afro-descendants' collective territorial rights in the 1990s. Driven by their local aquatic epistemologies, coastal communities are reclaiming authority over the seascape through the creation of a marine protected area. We argue that they have transformed relations of authority at sea to ensure local access and control, using state institutional instruments to subvert and challenge the legal framing of the sea as an open access public good. As such, this marine protected area represents a place of resistance that ironically subjects coastal communities to disciplinary technologies of conservation.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-03-09
    Description: The seasonal and interannual variability of chlorophyll in the Gulf of Mexico open waters is studied using a three‐dimensional coupled physical‐biogeochemical model. A 5 years hindcast driven by realistic open‐boundary conditions, atmospheric forcings, and freshwater discharges from rivers is performed. The use of recent in situ observations allowed an in‐depth evaluation of the model nutrient and chlorophyll seasonal distributions, including the chlorophyll vertical structure. We find that different chlorophyll patterns of temporal variability coexist in the deep basin which thereby cannot be considered as a homogeneous region with respect to chlorophyll dynamics. A partitioning of the Gulf of Mexico open waters based on the winter chlorophyll concentration increase is then proposed. This partition is basically explained by the amount of nutrients injected into the euphotic layer which is highly constrained by the dynamic of the winter mixed layer. The seasonal and interannual variability appears to be affected by the variability of atmospheric fluxes and mesoscale dynamics (Loop Current eddies in particular). Finally, estimates of primary production in the deep basin are provided.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-03-18
    Description: In marine climate change research, salinity shifts have been widely overlooked. While widespread desalination effects are expected in higher latitudes, salinity is predicted to increase closer to the equator. Here, we use the steep salinity gradient of the Baltic Sea as a space‐for time design to address effects of salinity change on populations. Additionally, genetic diversity, a prerequisite for adaptive responses, is reduced in Baltic compared to Atlantic populations. On the one hand, adaptive transgenerational plasticity (TGP) might buffer the effects of environmental change, which may be of particular importance under reduced genetic variation. On the other hand, physiological trade‐offs due to environmental stress may hamper parental provisioning to offspring thereby intensifying the impact of climate change across generations (non‐adaptive TGP). Here, we studied both hypothesis of adaptive and non‐adaptive TGP in the three‐spined stickleback (Gasterosteus aculeatus) fish model along the strong salinity gradient of the Baltic Sea in a space‐for‐time experiment. Each population tolerated desalination well, which was not altered by parental exposure to low salinity. Despite a common marine ancestor, populations locally adapted to low salinity lost their ability to cope with fully marine conditions, resulting in lower survival and reduced relative fitness. Negative transgenerational effects were evident in early life stages, but disappeared after selection via mortality occurred during the first 12‐30 days post hatch. Modeling various strengths of selection, we showed that non‐adaptive transgenerational plasticity accelerated evolution by increasing directional selection within the offspring generation. Qualitatively, when genetic diversity is large, we predict that such effects will facilitate rapid adaptation and population persistence, while below a certain threshold populations suffer a higher risk of local extinction. Overall, our results suggest that transgenerational plasticity and selection are not independent of each other and thereby highlight a current gap in TGP studies.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-09-23
    Description: River flooding is among the most destructive of natural hazards globally, causing widespread loss of life, damage to infrastructure and economic deprivation. Societies are currently under increasing threat from such floods, predominantly from increasing exposure of people and assets in flood‐prone areas, but also as a result of changes in flood magnitude, frequency, and timing. Accurate flood hazard and risk assessment are therefore crucial for the sustainable development of societies worldwide. With a paucity of hydrological measurements, evidence from the field offers the only insight into truly extreme events and their variability in space and time. Historical, botanical, and geological archives have increasingly been recognized as valuable sources of extreme flood event information. These different archives are here reviewed with a particular focus on the recording mechanisms of flood information, the historical development of the methodological approaches and the type of information that those archives can provide. These studies provide a wealthy dataset of hundreds of historical and palaeoflood series, whose analysis reveals a noticeable dominance of records in Europe. After describing the diversity of flood information provided by this dataset, we identify how these records have improved and could further improve flood hazard assessments and, thereby, flood management and mitigation plans.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-01-21
    Description: Aim: Invasive species are of increasing global concern. Nevertheless, the mechanisms driving further distribution after the initial establishment of non‐native species remain largely unresolved, especially in marine systems. Ocean currents can be a major driver governing range occupancy, but this has not been accounted for in most invasion ecology studies so far. We investigate how well initial establishment areas are interconnected to later occupancy regions to test for the potential role of ocean currents driving secondary spread dynamics in order to infer invasion corridors and the source–sink dynamics of a non‐native holoplanktonic biological probe species on a continental scale. Location: Western Eurasia. Time period: 1980s–2016. Major taxa studied: ‘Comb jelly’ Mnemiopsis leidyi. Methods: Based on 12,400 geo‐referenced occurrence data, we reconstruct the invasion history of M. leidyi in western Eurasia. We model ocean currents and calculate their stability to match the temporal and spatial spread dynamics with large‐scale connectivity patterns via ocean currents. Additionally, genetic markers are used to test the predicted connectivity between subpopulations. Results: Ocean currents can explain secondary spread dynamics, matching observed range expansions and the timing of first occurrence of our holoplanktonic non‐native biological probe species, leading to invasion corridors in western Eurasia. In northern Europe, regional extinctions after cold winters were followed by rapid recolonizations at a speed of up to 2,000 km per season. Source areas hosting year‐round populations in highly interconnected regions can re‐seed genotypes over large distances after local extinctions. Main conclusions: Although the release of ballast water from container ships may contribute to the dispersal of non‐native species, our results highlight the importance of ocean currents driving secondary spread dynamics. Highly interconnected areas hosting invasive species are crucial for secondary spread dynamics on a continental scale. Invasion risk assessments should consider large‐scale connectivity patterns and the potential source regions of non‐native marine species.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-03-18
    Description: Recently, Ponto-Caspian species (i.e., area of Azov, Black, and Caspian Seas) have invaded brackish and freshwater habitats of the North and Baltic Seas and the Laurentian Great Lakes in much higher numbers than expected based on shipping frequency and environmental conditions among these regions. Therefore, it has been suggested that Ponto-Caspian species may have inherent advantages over other species in colonizing new habitats, or that they are of freshwater origin. Artificial selection offers the possibility to investigate phenotypic plasticity, shifts in environmental tolerance, and heritability of environmentally sensitive traits; therefore, in this study, we conducted artificial selection experiments on Ponto-Caspian amphipod Pontogammarus maeoticus collected from 10 PSU to evaluate adaptation capacity of this species to different salinities, and to shed additional light on a possible freshwater origin of Ponto-Caspian invaders. Our results indicated that selection to lower salinity than that of the population's ambient salinity is possible within few generations due to a likely existence of standing polymorphic variation for selection to act on. In contrast, selection to higher salinity was unsuccessful because the phenotypic variation was mainly caused by environmental variance and therefore might depend on new mutations. Consequently, the results of our study suggest that the tested species might be of freshwater origin and lacks necessary genetic background for adaptation to fully marine conditions. Further selection studies using more species and populations, as well as molecular techniques, should be conducted to elucidate if other Ponto-Caspian invaders are of freshwater origin as well.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Earth's Future, 6 (3). pp. 565-582.
    Publication Date: 2021-02-08
    Description: To maintain the chance of keeping the average global temperature increase below 2 degrees C and to limit long-term climate change, removing carbon dioxide from the atmosphere (carbon dioxide removal, CDR) is becoming increasingly necessary. We analyze optimal and cost-effective climate policies in the dynamic integrated assessment model (IAM) of climate and the economy (DICE2016R) and investigate (1) the utilization of (ocean) CDR under different climate objectives, (2) the sensitivity of policies with respect to carbon cycle feedbacks, and (3) how well carbon cycle feedbacks are captured in the carbon cycle models used in state-of-the-art IAMs. Overall, the carbon cycle model in DICE2016R shows clear improvements compared to its predecessor, DICE2013R, capturing much better long-term dynamics and also oceanic carbon outgassing due to excess oceanic storage of carbon from CDR. However, this comes at the cost of a (too) tight short-term remaining emission budget, limiting the model suitability to analyze low-emission scenarios accurately. With DICE2016R, the compliance with the 2 degrees C goal is no longer feasible without negative emissions via CDR. Overall, the optimal amount of CDR has to take into account (1) the emission substitution effect and (2) compensation for carbon cycle feedbacks.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...