GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • OceanRep  (18)
  • AtlantOS  (6)
  • Nature Research  (6)
  • ECO2 Project Office  (2)
  • GEOMAR  (2)
  • ICES
  • Oxford Univ. Press
  • 2015-2019  (14)
  • 2010-2014  (4)
  • 2019  (14)
  • 2014  (4)
  • 1
    facet.materialart.
    Unknown
    ECO2 Project Office
    In:  ECO2 Deliverable, D5.2 . ECO2 Project Office, Kiel, Germany, 13 pp.
    Publication Date: 2019-03-11
    Description: Public fear for environmental and health impacts or potential leakage of CO2 from geological reservoirs is among the reasons why over the past decade CCS has not yet been deployed on a large enough scale so as to meaningfully contribute to mitigate climate change. Storage of CO2 under the seabed moves this climate mitigation option away from inhabited areas and could thereby take away some of the opposition towards this technology. Given that in the event of CO2 leakage for sub-seabed CCS the ocean would function as buffer for receiving this greenhouse gas, rather than the atmosphere, offshore CCS could particularly address concerns over the climatic impacts of CO2 seepage. In this paper we point out that recent geological studies confirm that leakage for individual offshore CCS operations may be highly unlikely from a technical point of view, if storage sites are well chosen, well managed and well monitored. But we argue that on a global long-term scale, for an ensemble of thousands or millions of storage sites, leakage of CO2 could take place in certain cases and/or countries for e.g. economic, institutional, legal or safety cultural reasons. We investigated what the impact could be in terms of temperature increase and ocean acidification if leakage would nevertheless occur, and addressed the question what the relative roles could be of on- and offshore CCS if mankind desires to divert the atmospheric damages resulting from climate change. For this purpose, we constructed a top-down energy-environment-economy model, with which we performed a probabilistic cost-benefit analysis of climate change mitigation with on- and offshore CCS as specific CO2 abatement options. One of our main conclusions is that even if there is non-zero leakage for CCS activity on a global scale, there is high probability that both onshore and offshore CCS could – on economic grounds – still account for anywhere between 20% and 80% of all future CO2 abatement efforts under a broad range of CCS cost assumptions.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-01-31
    Description: Ecological impact of global change is generated by multiple synchronous or asynchronous drivers which interact with each other and with intraspecific variability of sensitivities. In three near-natural experiments, we explored response correlations of full-sibling germling families of the seaweed Fucus vesiculosus towards four global change drivers: elevated CO2 (ocean acidification, OA), ocean warming (OW), combined OA and warming (OAW), nutrient enrichment and hypoxic upwelling. Among families, performance responses to OA and OW as well as to OAW and nutrient enrichment correlated positively whereas performance responses to OAW and hypoxia anti-correlated. This indicates (i) that families robust to one of the three drivers (OA, OW, nutrients) will also not suffer from the two other shifts, and vice versa and (ii) families benefitting from OAW will more easily succumb to hypoxia. Our results may imply that selection under either OA, OW or eutrophication would enhance performance under the other two drivers but simultaneously render the population more susceptible to hypoxia. We conclude that intraspecific response correlations have a high potential to boost or hinder adaptation to multifactorial global change scenarios.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    GEOMAR
    In:  GEOMAR, Kiel, Germany, 80 pp.
    Publication Date: 2021-02-25
    Description: Abstract Legal requirement in Europe asks for Ecosystem-Based Fisheries Management (EBFM) in European seas, including considerations of trophic interactions and minimization of negative impacts of fishing on food webs and ecosystem functioning. Focusing on the interaction between fisheries and ecosystem components, the trophic model presented here shows for the first time the “big picture” of the western Baltic Sea (WBS) food web by quantifying structure and flows between all trophic elements and the impact of fisheries that were and are active in the area, based on best available recent data. Model results show that fishing pressures exerted on the WBS since the early nineties of the past century forces not only top predators such as harbour porpoises and seals but also cod and other demersal fish to heavily compete for fish as food and to cover their dietary needs by shifting to organisms lower in the trophic web, mainly to benthic macrofauna and / or search for suitable prey in adjacent ecosystems such as Kattegat, Skagerrak, central Baltic Sea and North Sea. While common sense implementations of EBFM have been proposed, such as fishing all stocks below Fmsy and reducing fishing pressure even further for forage fish such as herring and sprat, few studies compared such fishing to alternative scenarios. Different options for EBFM, with regards to recovery of depleted stocks and sustainable future catches, are presented here based on the WBS ecosystem model, the legal framework given by the new Common Fisheries Policy (CFP) and the Marine Strategy Framework Directive (MSFD) of the European Union. The model explores four legally valid future fishery scenarios: 1) business as usual, 2) maximum sustainable fishing (F = Fmsy), 3) half of Fmsy, and 4) EBFM with F = 0.5 Fmsy for forage fish and F = 0.8 Fmsy for other fish. In addition, a “No-fishing” scenario demonstrates, that neither individual stocks nor the whole system would collapse when all fishing activities from 2017 on would cease. Simulations show that “Business as usual” would perpetuate low 2016 catches from depleted stocks in an unstable ecosystem where endangered species may be lost. In contrast, an “EBFM” scenario - with herring and sprat fished at 0.5 Fmsy level and cod and other stocks fished at 0.8 Fmsy level - allows the recovery of all stocks with strongly increased catches close to the maximum (at Fmsy) for cod and flatfish and catches similar to the 2016 level for herring and sprat but with strongly reduced fishing effort. Model and methodology presented here are considered suitable to assess MSFD Criterion D4C2 in the WBS.
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    AtlantOS
    In:  AtlantOS Deliverable, D5.1 . AtlantOS, 39 pp.
    Publication Date: 2019-05-28
    Description: Report on the current observing status in the North Atlantic subpolar gyre and the South Atlantic subtropical gyre, containing the results of the investigation on regional observing activities, systems, and connectivity in relation to climate and ecosystems
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    ICES
    In:  In: Report of the Joint CIESM/ICES Workshop on Mnemiopsis Science (JWMS). ICES Council Meeting Papers, SSGHIE:14 . ICES, Kopenhagen, Denmark, pp. 11-14.
    Publication Date: 2021-02-15
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-01-31
    Description: Predictive species distribution models are mostly based on statistical dependence between environmental and distributional data and therefore may fail to account for physiological limits and biological interactions that are fundamental when modelling species distributions under future climate conditions. Here, we developed a state-of-the-art method integrating biological theory with survey and experimental data in a way that allows us to explicitly model both physical tolerance limits of species and inherent natural variability in regional conditions and thereby improve the reliability of species distribution predictions under future climate conditions. By using a macroalga-herbivore association (Fucus vesiculosus - Idotea balthica) as a case study, we illustrated how salinity reduction and temperature increase under future climate conditions may significantly reduce the occurrence and biomass of these important coastal species. Moreover, we showed that the reduction of herbivore occurrence is linked to reduction of their host macroalgae. Spatial predictive modelling and experimental biology have been traditionally seen as separate fields but stronger interlinkages between these disciplines can improve species distribution projections under climate change. Experiments enable qualitative prior knowledge to be defined and identify cause-effect relationships, and thereby better foresee alterations in ecosystem structure and functioning under future climate conditions that are not necessarily seen in projections based on non-causal statistical relationships alone.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-01-31
    Description: Shallow hydrothermal vents are of pivotal relevance for ocean biogeochemical cycles, including seawater dissolved heavy metals and trace elements as well as the carbonate system balance. The Kueishan Tao (KST) stratovolcano off Taiwan is associated with numerous hydrothermal vents emitting warm sulfur-rich fluids at so-called White Vents (WV) and Yellow Vent (YV) that impact the surrounding seawater masses and habitats. The morphological and biogeochemical consequences caused by a M5.8 earthquake and a C5 typhoon (“Nepartak”) hitting KST (12th May, and 2nd–10th July, 2016) were studied within a 10-year time series (2009–2018) combining aerial drone imagery, technical diving, and hydrographic surveys. The catastrophic disturbances triggered landslides that reshaped the shoreline, burying the seabed and, as a consequence, native sulfur accretions that were abundant on the seafloor disappeared. A significant reduction in venting activity and fluid flow was observed at the high-temperature YV. Dissolved Inorganic Carbon (DIC) maxima in surrounding seawater reached 3000–5000 µmol kg−1, and Total Alkalinity (TA) drawdowns were below 1500–1000 µmol kg−1 lasting for one year. A strong decrease and, in some cases, depletion of dissolved elements (Cd, Ba, Tl, Pb, Fe, Cu, As) including Mg and Cl in seawater from shallow depths to the open ocean followed the disturbance, with a recovery of Mg and Cl to pre-disturbance concentrations in 2018. The WV and YV benthic megafauna exhibited mixed responses in their skeleton Mg:Ca and Sr:Ca ratios, not always following directions of seawater chemical changes. Over 70% of the organisms increased skeleton Mg:Ca ratio during rising DIC (higher CO2) despite decreasing seawater Mg:Ca ratios showing a high level of resilience. KST benthic organisms have historically co-existed with such events providing them ecological advantages under extreme conditions. The sudden and catastrophic changes observed at the KST site profoundly reshaped biogeochemical processes in shallow and offshore waters for one year, but they remained transient in nature, with a possible recovery of the system within two years.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Format: other
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    AtlantOS
    In:  AtlantOS Deliverable, D8.12 . AtlantOS, 16 pp.
    Publication Date: 2019-05-28
    Description: Assessment of the observing system fitness for storm surge forecasting and warning in the Atlantic
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-01-31
    Description: Shelf seas play an important role in the global carbon cycle, absorbing atmospheric carbon dioxide (CO2) and exporting carbon (C) to the open ocean and sediments. The magnitude of these processes is poorly constrained, because observations are typically interpolated over multiple years. Here, we used 298500 observations of CO2 fugacity (fCO2) from a single year (2015), to estimate the net influx of atmospheric CO2 as 26.2 ± 4.7 Tg C yr−1 over the open NW European shelf. CO2 influx from the atmosphere was dominated by influx during winter as a consequence of high winds, despite a smaller, thermally-driven, air-sea fCO2 gradient compared to the larger, biologically-driven summer gradient. In order to understand this climate regulation service, we constructed a carbon-budget supplemented by data from the literature, where the NW European shelf is treated as a box with carbon entering and leaving the box. This budget showed that net C-burial was a small sink of 1.3 ± 3.1 Tg C yr−1, while CO2 efflux from estuaries to the atmosphere, removed the majority of river C-inputs. In contrast, the input from the Baltic Sea likely contributes to net export via the continental shelf pump and advection (34.4 ± 6.0 Tg C yr−1).
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-01-31
    Description: Subtropical gyres are the oceanic regions where plastic litter accumulates over long timescales, exposing surrounding oceanic islands to plastic contamination, with potentially severe consequences on marine life. Islands’ exposure to such contaminants, littered over long distances in marine or terrestrial habitats, is due to the ocean currents that can transport plastic over long ranges. Here, this issue is addressed for the Easter Island ecoregion (EIE). High-resolution ocean circulation models are used with a Lagrangian particle-tracking tool to identify the connectivity patterns of the EIE with industrial fishing areas and coastline regions of the Pacific basin. Connectivity patterns for “virtual” particles either floating (such as buoyant macroplastics) or neutrally-buoyant (smaller microplastics) are investigated. We find that the South American shoreline between 20°S and 40°S, and the fishing zone within international waters off Peru (20°S, 80°W) are associated with the highest probability for debris to reach the EIE, with transit times under 2 years. These regions coincide with the most-densely populated coastal region of Chile and the most-intensely fished region in the South Pacific. The findings offer potential for mitigating plastic contamination reaching the EIE through better upstream waste management. Results also highlight the need for international action plans on this important issue.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...