GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Journals
  • Articles  (1,379)
  • Open Access-Papers  (1,379)
  • 2020-2023  (193)
  • 2015-2019  (641)
  • 2010-2014  (356)
  • 2005-2009  (188)
  • 1985-1989  (1)
Document type
  • Journals
  • Articles  (1,379)
Source
Language
Years
Year
  • 1
    facet.materialart.
    Unknown
    Intergovernmental Oceanographic Commission and Scientific Committee on Oceanic Research OC and SCOR, Paris, France and Newark, Delaware USA, 52 pp.
    In:  EPIC3Second Open Science Meeting. Progress in Interpreting Life History and Growth Dynamics of Harmful Algal Blooms in Fjords and Coastal Environments., Intergovernmental Oceanographic Commission and Scientific Committee on Oceanic Research OC and SCOR, Paris, France and Newark, Delaware USA, 52 pp., GEOHAB(10), 52 p.
    Publication Date: 2019-07-17
    Description: As part of the activities of the Global Ecology and Oceanography of Harmful Algal Blooms (GEOHAB)programme, Open Science Meetings (OSMs) have been organized to discuss and synthesize research efforts on various aspects of harmful algal blooms (HABs), and to plan future collaborative activities relevant to the research theme. Within this framework, the steering committee of the GEOHAB Core Research Project on HABs in Fjords and Coastal Embayments has organized two OSMs. The first OSM was held in 2004 in Santiago, Chile; the major goals were to identify the primary research priorities and to initiate an agenda to further our understanding of HAB dynamics in these small-scale coastal systems. The second OSM was held in May 2012 in Victoria,Canada to highlight the progress accomplished since the first OSM and to focus attention on the importance of a comparative approach in conducting ecosystem studies to improve our understanding of HABs. This second OSM addressed four major themes for which significant advances have been made in recent years, with particular focus on their application to semi-enclosed basins linked to coastal ecosystems: (1) Life history of HAB species; (2) Chemical ecological and toxin interactions; (3) Genetic diversity and (4) Transport and mixing of blooms in small-scale, mesoscale and semi-confined systems. This Report presents the major outcomes of this OSM, followed by recommendations for future collaborative studies. These recommendations include the maintenance of international activities on the ecology and oceanography of HABs after the end of the GEOHAB programme in December 2013. A future agenda should focus on a few key questions with clearly identifiable deliverables. These questions should include the development of (i) improved methods to determine the rates of cyst formation and germination in the field, and (ii) coupled biological-physical-chemical models more appropriate to small-scale environments and which incorporate the role of allelochemicals and toxins, as well as the pelagic and benthic coupling components. Research devoted to life history stages should be continued, particularly with respect to fish-killing algal species that cause particular damage in coastal environments. The influence of aquaculture activities on the development of HABs is poorly understood and should be of greater concern in future research on HABs. The influence of climate change, which may be exacerbated in coastal environments, also should be a focus of future research. Long-term ecological research should be encouraged in this respect, in order to make better predictions in the future concerning the development of HABs in coastal environments.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Miscellaneous , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-02-18
    Description: Consumption of natural resources should not exceed sustainable levels. The increasing use of biofuels and to some extent biomaterials, on top of rising food and feed demands, is causing countries to use a growing amount of global land, which may lead to land use conflicts and the expansion of cropland and intensive cultivation at the expense of natural ecosystems. Selective product certification cannot control the land use change triggered by growing overall biomass consumption. We propose a comprehensive approach to account for the global land use of countries for their domestic consumption, and assess this level with regard to globally acceptable levels of resource use, based on the concept of safe operating space. It is shown that the European Union currently uses one-third more cropland than globally available on a per capita basis and that with constant consumption levels it would exceed its fair share of acceptable resource use in 2030. As the use of global forests to meet renewable energy targets is becoming a concern, an approach to account for sustainable levels of timber flows is also proposed, based on the use of net annual increment, exemplified with preliminary data for Switzerland. Altogether, our approach would integrate the concept of sustainable consumption into national resource management plans; offering a conceptual basis and concrete reference values for informed policy making and urging countries to monitor and adjust their levels of resource consumption in a comprehensive way, respectful of the limits of sustainable supply.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: article , doc-type:article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-09-28
    Description: Maritime industries routinely collect critical environmental data needed for sustainable management of marine ecosystems, supporting both the blue economy and future growth. Collating this information would provide a valuable resource for all stakeholders. For the North Sea, the oil and gas industry has been a dominant presence for over 50 years that has contributed to a wealth of knowledge about the environment. As the industry begins to decommission its offshore structures, this information will be critical for avoiding duplication of effort in data collection and ensuring best environmental management of offshore activities. This paper summarises the outcomes of a Blue Growth Data Challenge Workshop held in 2017 with participants from: the oil and gas industry; the key UK regulatory and management bodies for oil and gas decommissioning; open access data facilitators; and academic and research institutes. Here, environmental data collection and archiving by oil and gas operators in the North Sea are described, alongside how this compares to other offshore industries; what the barriers and opportunities surrounding environmental data sharing are; and how wider data sharing from offshore industries could be achieved. Five primary barriers to data sharing were identified: 1) Incentives, 2) Risk Perception, 3) Working Cultures, 4) Financial Models, and 5) Data Ownership. Active and transparent communication and collaboration between stakeholders including industry, regulatory bodies, data portals and academic institutions will be key to unlocking the data that will be critical to informing responsible decommissioning decisions for offshore oil and gas structures in the North Sea.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Svalbard Integrated Arctic Earth Observing System (SIOS)
    In:  EPIC3Longyearbyen, Norway, Svalbard Integrated Arctic Earth Observing System (SIOS), 96 p., ISBN: 978-82-93871-03-3
    Publication Date: 2022-07-04
    Description: Executive Summary The State of Environmental Science in Svalbard (SESS) report 2021 together with its predecessors contributes to the documentation of the state of the Arctic environment in and around Svalbard, and highlights research conducted within the Svalbard Integrated Arctic Earth Observing System (SIOS). Climate change is a global problem, but many of its impacts are being felt most strongly in the Arctic. Given its remote but accessible location, Svalbard constitutes an ideal place to study the Arctic environment in general, including, more specifically, the causes and consequences of climate change. The Arctic Climate Change Update (2021) emphasised the severity of global climate change for ecosystems across the Arctic. They are undergoing radical changes regarding their structure and functioning, affecting flora, fauna and livelihoods of Arctic communities. Oceanic ecosystems and food webs are directly and indirectly altered by the warming and freshening of the Arctic Ocean. A prolonged open water period and the expansion of open water areas caused by declining sea ice affect under-ice productivity and diversity. These changes have cascading effects through ecosystems and impact the distribution, abundance and seasonality of a variety of marine species. Svalbard is located at one of the key oceanic gateways to the Arctic. This land–ice–ocean transition zone is a system particularly vulnerable to environmental changes. Svalbard’s environment is influenced by maritime processes; thus extensive observation of the ocean system is nowadays necessary. The chapter on the iMOP project reports seawater temperature and salinity variability over the last decades and indicates changes of Svalbard fjord seawater properties. The chapter highlights the role of a collaborative and supportive network of observatory operators and encourages joint planning and maintenance of future marine observatories. Arctic vegetation plays a key role in land–atmosphere interactions. Alterations can lead to ecosystem–climate feedbacks and exacerbate climate change. Extreme precipitation events are already becoming more frequent. Together with an increasing rain-to-snow ratio they impact the structure and functioning of terrestrial ecosystems. Dynamics in Arctic tundra ecosystems are expected to undergo fundamental changes with increasing temperatures as predicted by climate models. To detect, document, understand and predict those changes, COAT Svalbard provides a long-term and real-time operational observation system through ecosystem-based terrestrial monitoring. The observation system consists of six modules comprising food web pathways as well as one climate-monitoring module and focuses on two contrasting regions in Svalbard to allow for intercomparison. To date, the project has done an initial assessment of tundra ecosystems in Norway and will now begin with the long-term ecosystembased monitoring. For remote regions such as the Svalbard archipelago, terrestrial photography is a crucial addition to satellite imagery, because land-based cameras offer high temporal resolution and insensitivity towards varying weather conditions. PASSES provides an overview of cameras operating in Svalbard managed by research institutions and private companies. The survey revealed difficulties and knowledge gaps preventing the full potential of the terrestrial photography network in Svalbard from being used. Therefore, PASSES recommends the creation of a Svalbard camera system network. The effects of climate change contributed to a specific anomaly of the springtime Arctic atmosphere, namely a pronounced depletion of stratospheric ozone during March and April 2020, which can be called an Arctic ozone hole. In Svalbard, the amount of ozone loss was recorded by ground-based dedicated spectroscopic instruments measuring the total ozone column as well as the UV irradiance (EXAODEP-2020, an update of UV Ozone). The latter is important for effects on the biota. Corresponding erythemal daily doses for spring 2020 show a doubling compared to previous years with less or no ozone depletion. While the correspondence between ozone loss and increase in UV doses follows a well-known relationship, the possible later consequences of the observed springtime increase of UV doses on Svalbard’s environment need to be further studied. A particular method to observe the Svalbard environment, which has seen a very strong increase in usage during recent years, is the application of unmanned airborne or marine vehicles. The update on recent publications using these devices (UAV Svalbard) reveals that especially conventional remotely operated aerial vehicles (drones) with camera equipment are now widely used. It is recommended to SIOS to foster interdisciplinary communication among the multitude of drone users to establish exchange of information and data. New EU regulations for drone operations are being put in place from 2022 onwards also in Svalbard. Climate services are receiving more and more attention from Arctic countries, because they translate data into relevant and timely information, thereby supporting governments, societies and industries in planning and decision-making processes. SIOS contributes to climate services by providing research infrastructure with an overarching goal to develop and maintain a regional observational system for long-term measurements in and around Svalbard. The SIOS Core Data (SCD) consists of a list of essential Earth System Science variables relevant to determine environmental change in the Arctic. SCD is developed to improve the relevance and availability of scientific information addressing ESS topics for decision-making. SIOS Core Data providers have committed to maintain the observations for at least five years, to make the data publicly available, and to follow advanced principles of scientific data management and stewardship. Arctic climate change is posing risks to the safety, health and well-being of Arctic communities and ecosystems. Still, there remain gaps in our understanding of physical processes and societal implications. The authors of the SESS chapters have highlighted some unanswered questions and suggested concrete actions that should be taken to address them. The editors would like to thank the authors for their valuable contributions to the SESS Report 2021. These chapters illustrate how SIOS projects contribute to ensure the future vitality and resilience of Arctic peoples, communities and ecosystems.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Book , NonPeerReviewed
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-01-27
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , notRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Wuppertal : Wuppertal Institute for Climate, Environment and Energy | Wuppertal : Wuppertal Institut für Klima, Umwelt, Energie
    Publication Date: 2022-02-18
    Description: The study "Review of voluntary approaches in the European Union" has been conducted in the context of the project "Feasibility study on demonstration of voluntary approaches for industrial environmental management in China" and aims at evaluating the experience with voluntary agreements between industry and public authorities in the European Union. It is part of a comparative study between Europe and China. The study aims at providing a basis for adoption and further development of voluntary agreements in China. Therefore, conceptual information and case studies are presented in order to illustrate the instrument, its chances and risks as well as success factors.
    Keywords: ddc:320
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: report , doc-type:report
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-12
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-04-18
    Repository Name: National Museum of Natural History, Netherlands
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-10-01
    Repository Name: EPIC Alfred Wegener Institut
    Type: Book , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Copernicus Publications
    In:  EPIC3Advances in Geosciences, Copernicus Publications, 46, pp. 25-43, ISSN: 1680-7340
    Publication Date: 2019-08-01
    Description: Because geoscientific research often occurs via community-instigated bursts of activity with multi-investigator collaborations variously labelled as e.g., years (The International Polar Year IPY), experiments (World Ocean Circulation Experiment WOCE), programs (International Ocean Discovery Program), missions (CRYOSAT spacecraft), or decades (The International Decade of Ocean Exploration IDOE), successful attainment of research goals generally requires skilful scientific project management. In addition to the usual challenges of matching scientific ambitions to limited resources, on-going coordination and specifically project management, planning and implementation of polar science projects often involve many uncertainties caused by, for example, unpredictable weather or ocean and sea ice conditions, large-scale logistical juggling; and often these collaborations are spatially distributed and take place virtually. Large amounts of funding are needed to procure the considerable infrastructure and technical equipment required for polar expeditions; permissions to enter certain regions must be requested; and potential risks for expedition members as well as technical issues in extreme environments need to be considered. All these aspects are challenging for polar science projects, which therefore need a well thought-through program including a realistic alternative “plan B” and possibly also a “plan C” and “plan D”. The four most challenging overarching themes in polar science project management have been identified: international cooperation, interdisciplinarity, infrastructure, and community management. In this paper, we address ongoing challenges and opportunities in polar science project management based on a survey among 199 project and community managers and an additional of 85 project team members active in the field of polar sciences. Case studies and survey results are discussed with the conclusive goal to provide recommendations on how to fully reach the potential of polar sciences project and community management.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...