GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of food biochemistry 7 (1983), S. 0 
    ISSN: 1745-4514
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Notes: A commercial dextranase of Penicillium species was separated by gel-electrophoresis, using included dextran blue as the enzyme substrate. Subsequent incubation at the pH of optimal activity (6) and. at 37°C rendered visible a total of 14 enzyme components produced by degradation of the stained substrate at the site of enzyme activity.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Mutation Research/Environmental Mutagenesis and Related Subjects 164 (1986), S. 291 
    ISSN: 0165-1161
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Medicine
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 298 (1982), S. 765-767 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Fig. 1 Immunofluorescent and immunoferritin labelling of M. pneu -moniae cells by monoclonal antibody M43. a, For indirect immunoflo-urescence the glass-attached mycoplasmas were fixed either in 0.1% glutaraldehyde or in 5% formaldehyde in PBS for 15 min at room temperature and rinsed twice with ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Infection 10 (1982), S. 199-202 
    ISSN: 1439-0973
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Description / Table of Contents: Zusammenfassung Mycoplasma pneumoniae vermag sich an verschiedenartige Oberflächen anzuheften. Adhärenz an Glas und ähnliche inerte Materialien verlangt einen intakten Energiestoffwechsel. Die Bindung an Schaferythrozyten wird durch ein Oberflächenprotein der Mycoplasma-Membran vermittelt, das mit einem Neuraminsäurehaltigen Rezeptor reagiert. Bei der Anheftung an andere Erythrozyten scheinen noch weitere Mechanismen beteiligt zu sein. Für die Interaktion mit Gewebezellen werden teilweise unterschiedliche Ergebnisse berichtet. Das Zusammenwirken der verschiedenen Mechanismen ermöglicht die erfolgreiche Kolonisierung des menschlichen Respirationstraktes.
    Notes: Summary Mycoplasma pneumoniae attaches to a variety of surfaces. Adherence to inert surfaces such as glass requires an intact energy metabolism. Interaction with sheep erythrocytes occurs via a binding protein on the mycoplasma surface. The protein reacts with a receptor containing sialic acid. Adherence to other erythrocytes may involve different mechanisms. Different results have been reported on interaction with tissue cells. The various mechanisms probably cooperate and thereby facilitate the colonization of the human respiratory tract.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 0045-205X
    Keywords: Life and Medical Sciences
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Svalbard Integrated Arctic Earth Observing System (SIOS)
    In:  EPIC3Longyearbyen, Norway, Svalbard Integrated Arctic Earth Observing System (SIOS), 96 p., ISBN: 978-82-93871-03-3
    Publication Date: 2022-07-04
    Description: Executive Summary The State of Environmental Science in Svalbard (SESS) report 2021 together with its predecessors contributes to the documentation of the state of the Arctic environment in and around Svalbard, and highlights research conducted within the Svalbard Integrated Arctic Earth Observing System (SIOS). Climate change is a global problem, but many of its impacts are being felt most strongly in the Arctic. Given its remote but accessible location, Svalbard constitutes an ideal place to study the Arctic environment in general, including, more specifically, the causes and consequences of climate change. The Arctic Climate Change Update (2021) emphasised the severity of global climate change for ecosystems across the Arctic. They are undergoing radical changes regarding their structure and functioning, affecting flora, fauna and livelihoods of Arctic communities. Oceanic ecosystems and food webs are directly and indirectly altered by the warming and freshening of the Arctic Ocean. A prolonged open water period and the expansion of open water areas caused by declining sea ice affect under-ice productivity and diversity. These changes have cascading effects through ecosystems and impact the distribution, abundance and seasonality of a variety of marine species. Svalbard is located at one of the key oceanic gateways to the Arctic. This land–ice–ocean transition zone is a system particularly vulnerable to environmental changes. Svalbard’s environment is influenced by maritime processes; thus extensive observation of the ocean system is nowadays necessary. The chapter on the iMOP project reports seawater temperature and salinity variability over the last decades and indicates changes of Svalbard fjord seawater properties. The chapter highlights the role of a collaborative and supportive network of observatory operators and encourages joint planning and maintenance of future marine observatories. Arctic vegetation plays a key role in land–atmosphere interactions. Alterations can lead to ecosystem–climate feedbacks and exacerbate climate change. Extreme precipitation events are already becoming more frequent. Together with an increasing rain-to-snow ratio they impact the structure and functioning of terrestrial ecosystems. Dynamics in Arctic tundra ecosystems are expected to undergo fundamental changes with increasing temperatures as predicted by climate models. To detect, document, understand and predict those changes, COAT Svalbard provides a long-term and real-time operational observation system through ecosystem-based terrestrial monitoring. The observation system consists of six modules comprising food web pathways as well as one climate-monitoring module and focuses on two contrasting regions in Svalbard to allow for intercomparison. To date, the project has done an initial assessment of tundra ecosystems in Norway and will now begin with the long-term ecosystembased monitoring. For remote regions such as the Svalbard archipelago, terrestrial photography is a crucial addition to satellite imagery, because land-based cameras offer high temporal resolution and insensitivity towards varying weather conditions. PASSES provides an overview of cameras operating in Svalbard managed by research institutions and private companies. The survey revealed difficulties and knowledge gaps preventing the full potential of the terrestrial photography network in Svalbard from being used. Therefore, PASSES recommends the creation of a Svalbard camera system network. The effects of climate change contributed to a specific anomaly of the springtime Arctic atmosphere, namely a pronounced depletion of stratospheric ozone during March and April 2020, which can be called an Arctic ozone hole. In Svalbard, the amount of ozone loss was recorded by ground-based dedicated spectroscopic instruments measuring the total ozone column as well as the UV irradiance (EXAODEP-2020, an update of UV Ozone). The latter is important for effects on the biota. Corresponding erythemal daily doses for spring 2020 show a doubling compared to previous years with less or no ozone depletion. While the correspondence between ozone loss and increase in UV doses follows a well-known relationship, the possible later consequences of the observed springtime increase of UV doses on Svalbard’s environment need to be further studied. A particular method to observe the Svalbard environment, which has seen a very strong increase in usage during recent years, is the application of unmanned airborne or marine vehicles. The update on recent publications using these devices (UAV Svalbard) reveals that especially conventional remotely operated aerial vehicles (drones) with camera equipment are now widely used. It is recommended to SIOS to foster interdisciplinary communication among the multitude of drone users to establish exchange of information and data. New EU regulations for drone operations are being put in place from 2022 onwards also in Svalbard. Climate services are receiving more and more attention from Arctic countries, because they translate data into relevant and timely information, thereby supporting governments, societies and industries in planning and decision-making processes. SIOS contributes to climate services by providing research infrastructure with an overarching goal to develop and maintain a regional observational system for long-term measurements in and around Svalbard. The SIOS Core Data (SCD) consists of a list of essential Earth System Science variables relevant to determine environmental change in the Arctic. SCD is developed to improve the relevance and availability of scientific information addressing ESS topics for decision-making. SIOS Core Data providers have committed to maintain the observations for at least five years, to make the data publicly available, and to follow advanced principles of scientific data management and stewardship. Arctic climate change is posing risks to the safety, health and well-being of Arctic communities and ecosystems. Still, there remain gaps in our understanding of physical processes and societal implications. The authors of the SESS chapters have highlighted some unanswered questions and suggested concrete actions that should be taken to address them. The editors would like to thank the authors for their valuable contributions to the SESS Report 2021. These chapters illustrate how SIOS projects contribute to ensure the future vitality and resilience of Arctic peoples, communities and ecosystems.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Book , NonPeerReviewed
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...