GLORIA

GEOMAR Library Ocean Research Information Access

You have 0 saved results.
Mark results and click the "Add To Watchlist" link in order to add them to this list.

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Meteorological Society  (61)
  • 1
    Online Resource
    Online Resource
    American Meteorological Society ; 2005
    In:  Journal of Climate Vol. 18, No. 10 ( 2005-05-15), p. 1449-1468
    In: Journal of Climate, American Meteorological Society, Vol. 18, No. 10 ( 2005-05-15), p. 1449-1468
    Abstract: Coupled ocean–atmosphere variability in the tropical Indian Ocean is explored with a multicentury integration of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) Mark 3 climate model, which runs without flux adjustment. Despite the presence of some common deficiencies in this type of coupled model, zonal dipolelike variability is produced. During July through November, the dominant mode of variability of sea surface temperature resembles the observed zonal dipole and has out-of-phase rainfall variations across the Indian Ocean basin, which are as large as those associated with the model El Niño–Southern Oscillation (ENSO). In the positive dipole phase, cold SST anomaly and suppressed rainfall south of the equator on the Sumatra–Java coast drives an anticyclonic circulation anomaly that is consistent with the steady response (Gill model) to a heat sink displaced south of the equator. The northwest–southeast tilting Sumatra–Java coast results in cold sea surface temperature (SST) centered south of the equator, which forces anticylonic winds that are southeasterly along the coast, which thus produces local upwelling, cool SSTs, and promotes more anticylonic winds; on the equator, the easterlies raise the thermocline to the east via upwelling Kelvin waves and deepen the off-equatorial thermocline to the west via off-equatorial downwelling Rossby waves. The model dipole mode exhibits little contemporaneous relationship with the model ENSO; however, this does not imply that it is independent of ENSO. The model dipole often (but not always) develops in the year following El Niño. It is triggered by an unrealistic transmission of the model’s ENSO discharge phase through the Indonesian passages. In the model, the ENSO discharge Rossby waves arrive at the Sumatra–Java coast some 6 to 9 months after an El Niño peaks, causing the majority of model dipole events to peak in the year after an ENSO warm event. In the observed ENSO discharge, Rossby waves arrive at the Australian northwest coast. Thus the model Indian Ocean dipolelike variability is triggered by an unrealistic mechanism. The result highlights the importance of properly representing the transmission of Pacific Rossby waves and Indonesian throughflow in the complex topography of the Indonesian region in coupled climate models.
    Type of Medium: Online Resource
    ISSN: 1520-0442 , 0894-8755
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2005
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Meteorological Society ; 2009
    In:  Journal of Climate Vol. 22, No. 19 ( 2009-10-01), p. 5046-5071
    In: Journal of Climate, American Meteorological Society, Vol. 22, No. 19 ( 2009-10-01), p. 5046-5071
    Abstract: The present study assesses the ability of climate models to simulate rainfall teleconnections with the El Niño–Southern Oscillation (ENSO) and the Indian Ocean dipole (IOD). An assessment is provided on 24 climate models that constitute phase 3 of the World Climate Research Programme’s Coupled Model Intercomparison Project (WCRP CMIP3), used in the Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC). The strength of the ENSO–rainfall teleconnection, defined as the correlation between rainfall and Niño-3.4, is overwhelmingly controlled by the amplitude of ENSO signals relative to stochastic noise, highlighting the importance of realistically simulating this parameter. Because ENSO influences arise from the movement of convergence zones from their mean positions, the well-known equatorial Pacific climatological sea surface temperature (SST) and ENSO cold tongue anomaly biases lead to systematic errors. The climatological SSTs, which are far too cold along the Pacific equator, lead to a complete “nonresponse to ENSO” along the central and/or eastern equatorial Pacific in the majority of models. ENSO anomalies are also too equatorially confined and extend too far west, with linkages to a weakness in the teleconnection with Hawaii boreal winter rainfall and an inducement of a teleconnection with rainfall over west Papua New Guinea in austral summer. Another consequence of the ENSO cold tongue bias is that the majority of models produce too strong a coherence between SST anomalies in the west, central, and eastern equatorial Pacific. Consequently, the models’ ability in terms of producing differences in the impacts by ENSO from those by ENSO Modoki is reduced. Similarly, the IOD–rainfall teleconnection strengthens with an intensification of the IOD relative to the stochastic noise. A significant relationship exists between intermodel variations of IOD–ENSO coherence and intermodel variations of the ENSO amplitude in a small subset of models in which the ENSO anomaly structure and ENSO signal transmission to the Indian Ocean are better simulated. However, using all but one model (defined as an outlier) there is no systematic linkage between ENSO amplitude and IOD–ENSO coherence. Indeed, the majority of models produce an ENSO–IOD coherence lower than the observed, supporting the notion that the Indian Ocean has the ability to generate independent variability and that ENSO is not the only trigger of the IOD. Although models with a stronger IOD amplitude and rainfall teleconnection tend to have a greater ENSO amplitude, there is no causal relationship; instead this feature reflects a commensurate strength of the Bjerknes feedback in both the Indian and Pacific Oceans.
    Type of Medium: Online Resource
    ISSN: 1520-0442 , 0894-8755
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2009
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Meteorological Society ; 2014
    In:  Journal of Climate Vol. 27, No. 11 ( 2014-06-01), p. 3904-3919
    In: Journal of Climate, American Meteorological Society, Vol. 27, No. 11 ( 2014-06-01), p. 3904-3919
    Abstract: A feature of the Indian Ocean dipole (IOD) is its positive skewness, with cold IOD east pole (IODE) sea surface temperature anomalies (SSTAs) exhibiting larger amplitudes than warm SSTAs. Using the coupled Geophysical Fluid Dynamics Laboratory Earth System Model with Modular Ocean Model version 4 (MOM4) component (GFDL-ESM2M), the role of nonlinear feedbacks in generating this positive skewness is investigated and their response to global warming examined. These feedbacks are a nonlinear dynamic heating process, the Bjerknes feedback, wind–evaporation–SST feedback, and SST–cloud–radiation feedback. Nonlinear dynamic heating assists IOD skewness by strongly damping warm IODE SSTAs and reinforcing cold IODE anomalies. In a warmer climate, the damping strengthens while the reinforcement weakens. The SST–thermocline relationship is part of the positive Bjerknes feedback and contributes strongly to IOD skewness as it is weak during the development of warm IODE SSTAs, but strong during the development of cold IODE SSTAs. In response to global warming, this relationship displays weaker asymmetry associated with weaker westerly winds over the central equatorial Indian Ocean. The negative SST–cloud–radiation feedback is also asymmetric with cold IODE SSTAs less damped by incoming shortwave radiation. Under global warming, the damping of cold IODE SSTAs shows little change but warm IODE SSTAs become more damped. This stronger damping is a symptom of negative IODs becoming stronger in amplitude due to the mean IODE thermocline shoaling. The wind–evaporation–SST feedback does not contribute to IOD asymmetry with cold IODE SSTAs decreasing evaporation, which in turn warms the surface. However, as this study focuses on one model, the response of these feedbacks to global warming is uncertain.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2014
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Meteorological Society ; 2014
    In:  Journal of Climate Vol. 27, No. 20 ( 2014-10-15), p. 7807-7829
    In: Journal of Climate, American Meteorological Society, Vol. 27, No. 20 ( 2014-10-15), p. 7807-7829
    Abstract: Atmospheric and oceanic conditions associated with southern Australian heat waves are examined using phase 5 of the Coupled Model Intercomparison Project (CMIP5) models. Accompanying work analyzing modeled heat wave statistics for Australia finds substantial increases in the frequency, duration, and temperature of heat waves by the end of the twenty-first century. This study assesses the ability of CMIP5 models to simulate the synoptic and oceanic conditions associated with southern Australian heat waves, and examines how the classical atmospheric setup associated with heat waves is projected to change in response to mean-state warming. To achieve this, near-surface temperature, mean sea level pressure, and sea surface temperature (SST) from the historical and high-emission simulations are analyzed. CMIP5 models are found to represent the synoptic setup associated with heat waves well, despite showing greater variation in simulating SST anomalies. The models project a weakening of the pressure couplet associated with future southern Australian heat waves, suggesting that even a non-classical synoptic setup is able to generate more frequent heat waves in a warmer world. A future poleward shift and strengthening of heat wave–inducing anticyclones is confirmed using a tracking scheme applied to model projections. Model consensus implies that while anticyclones associated with the hottest future southern Australian heat waves will be more intense and originate farther poleward, a greater proportion of heat waves occur in association with a weaker synoptic setup that, when combined with warmer mean-state temperatures, gives rise to more future heat waves.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2014
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Meteorological Society ; 2019
    In:  Journal of Climate Vol. 32, No. 11 ( 2019-06-01), p. 3343-3356
    In: Journal of Climate, American Meteorological Society, Vol. 32, No. 11 ( 2019-06-01), p. 3343-3356
    Abstract: Responding to El Niño diversity, greater winter southern China (SC) rainfall is associated with an anomalous warming in the eastern tropical Pacific, but less rainfall with an anomalous warming in the central tropical Pacific. Compared with other widely used indices, the first two principal components of sea surface temperature anomalies in the tropical Pacific better represent the influences of the different El Niño anomaly patterns on winter SC rainfall. This is because these two indices can distinguish a zonal shift of the west North Pacific anticyclone, which conveys the tropical Pacific influence on SC rainfall. At a positive phase, the first principal component features a pattern similar to that of a canonical El Niño, whereas the second component is characterized by a warming in the central Pacific. Based on these two indices, performance of phase 5 of the Coupled Model Intercomparison Project models in simulating the SC rainfall response to El Niño is evaluated. About half of the models cannot reproduce the response to either principal component. The majority of the remaining models can only simulate the response to one principal component, and only five models produce a reasonable response to both principal components. Importantly, changes to SC rainfall in the future depend on the simulation of the SC rainfall response. Models that simulate the teleconnection of SC rainfall with only the first (second) principal component project an increase (decrease) in SC rainfall. Projection of a rainfall change in models that simulate the teleconnection with both principal components, that is, a moderate increase in SC winter rainfall, is more credible.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2019
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Meteorological Society ; 2009
    In:  Journal of Climate Vol. 22, No. 8 ( 2009-04-15), p. 2240-2247
    In: Journal of Climate, American Meteorological Society, Vol. 22, No. 8 ( 2009-04-15), p. 2240-2247
    Abstract: Since 1951, late spring (May) rainfall over southeastern China (SEC) has decreased by more than 30% from its long-term average, in contrast to a rainfall increase in boreal summer. The dynamics have yet to be fully determined. This paper shows that as the Indo-Pacific enters into a La Niña phase, significant negative mean sea level pressure (MSLP) anomalies grow over the Indian Ocean and the western Pacific sector. The associated large-scale southwesterly anomalies transport moisture to the nearby South China Sea and the SEC region, contributing to a higher rainfall. A presence of a Philippine Sea anticyclonic (PSAC) pattern, arising from a decaying El Niño, strengthens the rain-conducive flow to SEC, but it is not a necessary condition. During the past decades, an increase in protracted El Niño events accompanied by a reduction in La Niña episodes has contributed to the May rainfall decline. The extent to which climate change is contributing is discussed.
    Type of Medium: Online Resource
    ISSN: 1520-0442 , 0894-8755
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2009
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Meteorological Society ; 2013
    In:  Journal of Climate Vol. 26, No. 17 ( 2013-09-01), p. 6649-6659
    In: Journal of Climate, American Meteorological Society, Vol. 26, No. 17 ( 2013-09-01), p. 6649-6659
    Abstract: An assessment of how well climate models simulate the Indian Ocean dipole (IOD) is undertaken using 20 coupled models that have partaken in phase 5 of the Coupled Model Intercomparison Project (CMIP5). Compared with models in phase 3 (CMIP3), no substantial improvement is evident in the simulation of the IOD pattern and/or amplitude during austral spring [September–November (SON)] . The majority of models in CMIP5 generate a larger variance of sea surface temperature (SST) in the Sumatra–Java upwelling region and an IOD amplitude that is far greater than is observed. Although the relationship between precipitation and tropical Indian Ocean SSTs is well simulated, future projections of SON rainfall changes over IOD-influenced regions are intrinsically linked to the IOD amplitude and its rainfall teleconnection in the model present-day climate. The diversity of the simulated IOD amplitudes in models in CMIP5 (and CMIP3), which tend to be overly large, results in a wide range of future modeled SON rainfall trends over IOD-influenced regions. The results herein highlight the importance of realistically simulating the present-day IOD properties and suggest that caution should be exercised in interpreting climate projections in the IOD-affected regions.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2013
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    American Meteorological Society ; 2013
    In:  Journal of Climate Vol. 26, No. 3 ( 2013-02-01), p. 959-972
    In: Journal of Climate, American Meteorological Society, Vol. 26, No. 3 ( 2013-02-01), p. 959-972
    Abstract: The tropical Indian Ocean dipole/zonal mode (IOD) is phase locked with the austral winter and spring seasons. This study describes three types of the IOD in terms of their peak time and duration. In particular, the authors focus on a new type that develops in May–June and matures in July–August, which is distinctively different from the canonical IOD, which may develop later and peak in September–November or persist from June to November. Such “unseasonable” IOD events are only observed since the mid-1970s, a period after which the tropical Indian Ocean has a closer relationship with the Pacific Ocean. The unseasonable IOD is an intrinsic mode of the Indian Ocean and occurs without an ensuing El Niño. A change in winds along the equator is identified as a major forcing. The wind change is in turn related to a weakening Walker circulation in the Indian Ocean sector in austral winter, which is in part forced by the rapid Indian Ocean warming. Thus, although the occurrence of the unseasonable IOD may be partially influenced by oceanic variability, the authors’ results suggest an influence from the Indian Ocean warming. This suggestion, however, awaits further investigation using fully coupled climate models.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2013
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Meteorological Society ; 2015
    In:  Journal of Climate Vol. 28, No. 7 ( 2015-04-01), p. 2564-2583
    In: Journal of Climate, American Meteorological Society, Vol. 28, No. 7 ( 2015-04-01), p. 2564-2583
    Abstract: The tropical Indian Ocean has experienced a faster warming rate in the west than in the east over the twentieth century. The warming pattern resembles a positive Indian Ocean dipole (IOD) that is well captured by climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5), forced with the two main anthropogenic forcings, long-lived greenhouse gases (GHGs), and aerosols. However, much less is known about how GHGs and aerosols influence the IOD asymmetry, including the negative sea surface temperature (SST) skewness in the east IOD pole (IODE). Here, it is shown that the IODE SST negative skewness is more enhanced by aerosols than by GHGs using single-factor forcing experiments from 10 CMIP5 models. Aerosols induce a greater mean zonal thermocline gradient along the tropical Indian Ocean than that forced by GHGs, whereby the thermocline is deeper in the east relative to the west. This generates strong asymmetry in the SST response to thermocline anomalies between warm and cool IODE phases in the aerosol-only experiments, enhancing the negative IODE SST skewness. Other feedback processes involving zonal wind, precipitation, and evaporation cannot solely explain the enhanced SST skewness by aerosols. An interexperiment comparison in one model with strong skewness confirms that the mean zonal thermocline gradient across the Indian Ocean determines the magnitude of the SST–thermocline asymmetry, which in turn controls the SST skewness strength. The findings suggest that as aerosol emissions decline and GHGs increase, this will likely contribute to a future weakening of the IODE SST skewness.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2015
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    American Meteorological Society ; 2019
    In:  Journal of Climate Vol. 32, No. 13 ( 2019-07-01), p. 3837-3845
    In: Journal of Climate, American Meteorological Society, Vol. 32, No. 13 ( 2019-07-01), p. 3837-3845
    Abstract: We found that a positive sea surface temperature (SST)–precipitation relationship in the western tropical Pacific (WTP) during boreal spring, in which higher SSTs are associated with higher precipitation, episodically weakens from the late 1990s to the early 2010s. During 1980–98, warm SSTs induce positive precipitation and low pressure in the WTP. The associated enhanced convection dampens the initial warm SSTs by reflecting incoming solar radiation. The reduced incoming solar radiation into the ocean leads to a SST cooling tendency. In contrast, the associated southwesterly wind anomalies reduce oceanic mixing by decreasing the mean wind, contributing to an SST warming tendency, though relatively small. Therefore, the cloud–radiation effect is a dominant process of the negative SST tendency. By contrast, during 1999–2014, although an SST cooling tendency is similarly induced by warm SST anomalies, the cooling tendency is enhanced by anomalous ocean advection, as a result of enhanced easterly wind anomalies in the southern part of the WTP. This results in a weakening of a positive relationship of the SST and precipitation during 1999–2014. As such, the associated anomalous convective heating in the WTP during 1999–2014 is weak, changing the atmospheric teleconnection patterns in the midlatitude and surface air temperature anomalies in western North America and northeastern Eurasia.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2019
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...