GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Meteorological Society  (2)
  • Qiu, Yun  (2)
Material
Publisher
  • American Meteorological Society  (2)
Person/Organisation
Language
Years
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    American Meteorological Society ; 2009
    In:  Journal of Climate Vol. 22, No. 8 ( 2009-04-15), p. 2240-2247
    In: Journal of Climate, American Meteorological Society, Vol. 22, No. 8 ( 2009-04-15), p. 2240-2247
    Abstract: Since 1951, late spring (May) rainfall over southeastern China (SEC) has decreased by more than 30% from its long-term average, in contrast to a rainfall increase in boreal summer. The dynamics have yet to be fully determined. This paper shows that as the Indo-Pacific enters into a La Niña phase, significant negative mean sea level pressure (MSLP) anomalies grow over the Indian Ocean and the western Pacific sector. The associated large-scale southwesterly anomalies transport moisture to the nearby South China Sea and the SEC region, contributing to a higher rainfall. A presence of a Philippine Sea anticyclonic (PSAC) pattern, arising from a decaying El Niño, strengthens the rain-conducive flow to SEC, but it is not a necessary condition. During the past decades, an increase in protracted El Niño events accompanied by a reduction in La Niña episodes has contributed to the May rainfall decline. The extent to which climate change is contributing is discussed.
    Type of Medium: Online Resource
    ISSN: 1520-0442 , 0894-8755
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2009
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Meteorological Society ; 2013
    In:  Journal of Climate Vol. 26, No. 9 ( 2013-05-01), p. 2880-2890
    In: Journal of Climate, American Meteorological Society, Vol. 26, No. 9 ( 2013-05-01), p. 2880-2890
    Abstract: A well-known feature of the Indian Ocean dipole (IOD) is its positive skewness, with cold sea surface temperature (SST) anomalies over the east pole (IODE) exhibiting a larger amplitude than warm SST anomalies. Several mechanisms have been proposed for this asymmetry, but because of a lack of observations the role of various processes remains contentious. Using Argo profiles and other newly available data, the authors provide an observation-based assessment of the IOD skewness. First, the role of a nonlinear dynamical heating process is reaffirmed, which reinforces IODE cold anomalies but damps IODE warm anomalies. This reinforcing effect is greater than the damping effect, further contributing to the skewness. Second, the existence of a thermocline–temperature feedback asymmetry, whereby IODE cold anomalies induced by a shoaling thermocline are greater than warm anomalies associated with a deepening thermocline, is the primary forcing of the IOD skewness. This thermocline–temperature feedback asymmetry is a part of the nonlinear Bjerknes-like positive feedback loop involving winds, SST, and the thermocline, all displaying a consistent asymmetry with a stronger response when IODE SST is anomalously cold. The asymmetry is enhanced by a nonlinear barrier layer response, with a greater thinning associated with IODE cold anomalies than a thickening associated with IODE warm anomalies. Finally, in response to IODE cool anomalies, rainfall and evaporative heat loss diminish and incoming shortwave radiation increases, which results in damping the cool SST anomalies. The damping increases with IODE cold anomalies. Thus, the IOD skewness is generated in spite of a greater damping effect of the SST–cloud–radiation feedback process.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2013
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...