GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    American Geophysical Union (AGU) ; 2022
    In:  Geophysical Research Letters Vol. 49, No. 17 ( 2022-09-16)
    In: Geophysical Research Letters, American Geophysical Union (AGU), Vol. 49, No. 17 ( 2022-09-16)
    Kurzfassung: Atmosphere‐only models, like coupled models, struggle to simulate tropical Pacific wind stress trends of similar magnitude to observed Models with weaker wind trends tend to have a weaker monthly wind response to sea surface temperatures and a weaker link to winds aloft Models with strong trends have a better South Pacific Convergence Zone shift but a too strong sea level pressure gradient
    Materialart: Online-Ressource
    ISSN: 0094-8276 , 1944-8007
    Sprache: Englisch
    Verlag: American Geophysical Union (AGU)
    Publikationsdatum: 2022
    ZDB Id: 2021599-X
    ZDB Id: 7403-2
    SSG: 16,13
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    In: Nature Climate Change, Springer Science and Business Media LLC, Vol. 4, No. 2 ( 2014-2), p. 111-116
    Materialart: Online-Ressource
    ISSN: 1758-678X , 1758-6798
    Sprache: Englisch
    Verlag: Springer Science and Business Media LLC
    Publikationsdatum: 2014
    ZDB Id: 2603450-5
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    American Geophysical Union (AGU) ; 2012
    In:  Geophysical Research Letters Vol. 39, No. 8 ( 2012-04), p. n/a-n/a
    In: Geophysical Research Letters, American Geophysical Union (AGU), Vol. 39, No. 8 ( 2012-04), p. n/a-n/a
    Materialart: Online-Ressource
    ISSN: 0094-8276
    Sprache: Englisch
    Verlag: American Geophysical Union (AGU)
    Publikationsdatum: 2012
    ZDB Id: 2021599-X
    ZDB Id: 7403-2
    SSG: 16,13
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Online-Ressource
    Online-Ressource
    American Meteorological Society ; 2012
    In:  Journal of Climate Vol. 25, No. 18 ( 2012-09-15), p. 6318-6329
    In: Journal of Climate, American Meteorological Society, Vol. 25, No. 18 ( 2012-09-15), p. 6318-6329
    Kurzfassung: Recent research has shown that the climatic impact from El Niño–Southern Oscillation (ENSO) on middle latitudes west of the western Pacific (e.g., southeast Australia) during austral spring (September–November) is conducted via the tropical Indian Ocean (TIO). However, it is not clear whether this impact pathway is symmetric about the positive and negative phases of ENSO and the Indian Ocean dipole (IOD). It is shown that a strong asymmetry does exist. For ENSO, only the impact from El Niño is conducted through the TIO pathway; the impact from La Niña is delivered through the Pacific–South America pattern. For the IOD, a greater convection anomaly and wave train response occurs during positive IOD (pIOD) events than during negative IOD (nIOD) events. This “impact asymmetry” is consistent with the positive skewness of the IOD, principally due to a negative skewness of sea surface temperature (SST) anomalies in the east IOD (IODE) pole. In the IODE region, convection anomalies are more sensitive to a per unit change of cold SST anomalies than to the same unit change of warm SST anomalies. This study shows that the IOD skewness occurs despite the greater damping, rather than due to a breakdown of this damping as suggested by previous studies. This IOD impact asymmetry provides an explanation for much of the reduction in spring rainfall over southeast Australia during the 2000s. Key to this rainfall reduction is the increased occurrences of pIOD events, more so than the lack of nIOD events.
    Materialart: Online-Ressource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Sprache: Englisch
    Verlag: American Meteorological Society
    Publikationsdatum: 2012
    ZDB Id: 246750-1
    ZDB Id: 2021723-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Online-Ressource
    Online-Ressource
    American Meteorological Society ; 2011
    In:  Journal of Climate Vol. 24, No. 23 ( 2011-12-01), p. 6035-6053
    In: Journal of Climate, American Meteorological Society, Vol. 24, No. 23 ( 2011-12-01), p. 6035-6053
    Kurzfassung: In recent decades, southeast Australia (SEA) has experienced a severe rainfall decline, with a maximum reduction in the austral autumn season. The cause(s) of this decline remain unclear. This study examines the interaction between remote large-scale climate modes and an atmospheric phenomenon known as the subtropical ridge (STR) at the local scale. A focus is placed on the utility of using the STR as a bridge for understanding how these remote climate drivers influence SEA rainfall through a response in local atmospheric conditions. Using observational data since 1979, it is found that a strong seasonality exists in the impact of the STR on SEA rainfall. In austral autumn, because SEA rainfall is poorly correlated with the STR intensity (STRI) and STR position (STRP) on an interannual basis, it follows that most of the autumn rainfall reduction cannot be explained by the STRI changes in this season. There is also no clear relationship between the autumn STR and known remote modes of variability. Reductions in SEA rainfall have occurred in the austral winter and spring seasons; however, neither is significant. During winter, although El Niño–Southern Oscillation (ENSO) has little impact on the STR, there is a significant influence from the Indian Ocean dipole (IOD) and the southern annular mode (SAM). The IOD impact is conducted through equivalent-barotropic Rossby wave trains stemming from the eastern Indian Ocean in response to the IOD-induced anomalous convection and divergence. These wave trains modify the intensity and position of the ridge over SEA. The impact from the SAM is similarly projected onto the STRI and STRP. The STR trend accounts for the entire observed decline in SEA winter rainfall, 80% of which is contributed by the upward trend of the IOD; the SAM exhibits virtually no trend over the 30-yr period in this season. In spring, SEA rainfall shows strong interannual variability and is well correlated with the STRI; the ridge itself is influenced by the IOD and ENSO but not by the SAM. The Indian Ocean is a major pathway for ENSO’s impact on SEA rainfall in this season, which is conducted by two wave trains emanating from the east and west poles of the IOD. These wave train patterns share an anomalously high surface pressure center south of Australia, which does not align with the STR over SEA. As such, only a small portion of the STRI variance is accounted for by fluctuations in ENSO and the IOD. Long-term changes in the STRI account for about 90% of the observed decline in SEA spring rainfall, all of which are due to a recent increased frequency in the number of positive IOD events (upward IOD trend); ENSO shows no long-term trend over the 30-yr period. In summary, variability and change in winter and spring rainfall across SEA can be understood through the impact of remote climate modes, such as ENSO, the IOD, and the SAM, on the STR. This approach, however, offers no utility for understanding what drives the long-term SEA autumn rainfall decline, the dynamics of which remain elusive.
    Materialart: Online-Ressource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Sprache: Englisch
    Verlag: American Meteorological Society
    Publikationsdatum: 2011
    ZDB Id: 246750-1
    ZDB Id: 2021723-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Online-Ressource
    Online-Ressource
    American Meteorological Society ; 2013
    In:  Journal of Climate Vol. 26, No. 9 ( 2013-05-01), p. 2796-2810
    In: Journal of Climate, American Meteorological Society, Vol. 26, No. 9 ( 2013-05-01), p. 2796-2810
    Kurzfassung: In austral summer, El Niño–Southern Oscillation (ENSO) covaries with the Indian Ocean Basin Mode (IOBM) and with the southern annular mode (SAM). The present study addresses how the IOBM and the SAM modulate the impact of ENSO on Australia. The authors show that the modulating effect of the SAM is limited; in particular, the SAM does not modify the ENSO teleconnection pattern. However, the IOBM extends ENSO-induced convection anomalies westward over northern Australia and over the eastern Indian Ocean, whereby extending the ENSO tropical teleconnection to the northwest of Australia. The IOBM also generates an equivalent-barotropic Rossby wave train through convection anomalies over northern Australia. The wave train shares an anomaly center over the Tasman Sea latitudes with the Pacific–South American (PSA) pattern, shifting the anomaly center of the PSA pattern to within a closer proximity to Australia. There is a strong asymmetry in the IOBM modulating effect. During an IOBM negative phase, which tends to coincide with La Niña events, the rainfall increase is far greater than the reduction during a positive IOBM phase, which tends to coincide with El Niño events. This modulation asymmetry is consistent with an asymmetry in the ENSO–rainfall teleconnection over Australia, in which the La Niña–rainfall teleconnection is stronger than the El Niño–rainfall teleconnection. This asymmetric ENSO–rainfall teleconnection ensures a higher coherence of northern Australia convective anomalies with La Niña or with a negative phase of the IOBM, hence a greater modification of the PSA pattern, underpinning the asymmetric modulating role of the IOBM.
    Materialart: Online-Ressource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Sprache: Englisch
    Verlag: American Meteorological Society
    Publikationsdatum: 2013
    ZDB Id: 246750-1
    ZDB Id: 2021723-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Online-Ressource
    Online-Ressource
    Springer Science and Business Media LLC ; 2019
    In:  Nature Communications Vol. 10, No. 1 ( 2019-01-02)
    In: Nature Communications, Springer Science and Business Media LLC, Vol. 10, No. 1 ( 2019-01-02)
    Kurzfassung: After exhibiting an upward trend since 1979, Antarctic sea ice extent (SIE) declined dramatically during austral spring 2016, reaching a record low by December 2016. Here we show that a combination of atmospheric and oceanic phenomena played primary roles for this decline. The anomalous atmospheric circulation was initially driven by record strength tropical convection over the Indian and western Pacific Oceans, which resulted in a wave-3 circulation pattern around Antarctica that acted to reduce SIE in the Indian Ocean, Ross and Bellingshausen Sea sectors. Subsequently, the polar stratospheric vortex weakened significantly, resulting in record weakening of the circumpolar surface westerlies that acted to decrease SIE in the Indian Ocean and Pacific Ocean sectors. These processes appear to reflect unusual internal atmosphere-ocean variability. However, the warming trend of the tropical Indian Ocean, which may partly stem from anthropogenic forcing, may have contributed to the severity of the 2016 SIE decline.
    Materialart: Online-Ressource
    ISSN: 2041-1723
    Sprache: Englisch
    Verlag: Springer Science and Business Media LLC
    Publikationsdatum: 2019
    ZDB Id: 2553671-0
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Online-Ressource
    Online-Ressource
    Springer Science and Business Media LLC ; 2019
    In:  Climate Dynamics Vol. 53, No. 5-6 ( 2019-9), p. 3641-3659
    In: Climate Dynamics, Springer Science and Business Media LLC, Vol. 53, No. 5-6 ( 2019-9), p. 3641-3659
    Materialart: Online-Ressource
    ISSN: 0930-7575 , 1432-0894
    Sprache: Englisch
    Verlag: Springer Science and Business Media LLC
    Publikationsdatum: 2019
    ZDB Id: 382992-3
    ZDB Id: 1471747-5
    SSG: 16,13
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Online-Ressource
    Online-Ressource
    Springer Science and Business Media LLC ; 2020
    In:  Climate Dynamics Vol. 55, No. 5-6 ( 2020-09), p. 1489-1505
    In: Climate Dynamics, Springer Science and Business Media LLC, Vol. 55, No. 5-6 ( 2020-09), p. 1489-1505
    Kurzfassung: A systematic analysis of the main weather types influencing southern Australian rainfall is presented for the period 1979–2015. This incorporates two multi-method datasets of cold fronts and low pressure systems, which indicate the more robust fronts and lows as distinguished from the weaker and less impactful events that are often indicated only by a single method. The front and low pressure system datasets are then combined with a dataset of environmental conditions associated with thunderstorms, as well as datasets of warm fronts and high pressure systems. The results demonstrate that these weather types collectively account for about 86% of days and more than 98% of rainfall in Australia south of 25° S. We also show how the key rain-bearing weather systems vary throughout the year and for different regions, with the co-occurrence of simultaneous lows, fronts and thunderstorm conditions particularly important during the spring and summer months in southeast Australia.
    Materialart: Online-Ressource
    ISSN: 0930-7575 , 1432-0894
    Sprache: Englisch
    Verlag: Springer Science and Business Media LLC
    Publikationsdatum: 2020
    ZDB Id: 382992-3
    ZDB Id: 1471747-5
    SSG: 16,13
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    In: Water Resources Research, American Geophysical Union (AGU), Vol. 59, No. 6 ( 2023-06)
    Kurzfassung: Weather system changes in Victoria, Australia are partly related to a change in rainfall‐runoff relationship (RRR) during a decade‐long drought Less rainfall from fronts and more rainfall from thunderstorm enhanced systems were an indicator of RRR change Internal catchment characteristics were a greater indicator of RRR change than changes in weather systems
    Materialart: Online-Ressource
    ISSN: 0043-1397 , 1944-7973
    Sprache: Englisch
    Verlag: American Geophysical Union (AGU)
    Publikationsdatum: 2023
    ZDB Id: 2029553-4
    ZDB Id: 5564-5
    SSG: 13
    SSG: 14
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...