GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Publication Date: 2022-05-25
    Description: Author Posting. © The Oceanography Society, 2012. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 25, no. 3 (2012): 40-53, doi:10.5670/oceanog.2012.73.
    Description: In search of an explanation for some of the greenest waters ever seen in coastal Antarctica and their possible link to some of the fastest melting glaciers and declining summer sea ice, the Amundsen Sea Polynya International Research Expedition (ASPIRE) challenged the capabilities of the US Antarctic Program and RVIB Nathaniel B. Palmer during Austral summer 2010–2011. We were well rewarded by both an extraordinary research platform and a truly remarkable oceanic setting. Here we provide further insights into the key questions that motivated our sampling approach during ASPIRE and present some preliminary findings, while highlighting the value of the Palmer for accomplishing complex, multifaceted oceanographic research in such a challenging environment.
    Description: This project was funded by the National Science Foundation Office of Polar Programs, Antarctic Organisms and Ecosystems (ANT-0839069 to PY, ANT-0838995 to RS, ANT-0838975 to SS, ANT-0838995 to OS, ANT- 0944727 to KA, and ANT-0839012 to Hugh Ducklow), and the Swedish Research Council (Grant 2008-6430 to SB and LR), with logistic support from the Swedish Polar Research Secretariat and Raytheon Polar Services.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in The ISME Journal 6 (2012): 670–679, doi:10.1038/ismej.2011.128.
    Description: Akinetes are dormancy cells commonly found among filamentous cyanobacteria, many of which are toxic and/or nuisance, bloom-forming species. Development of akinetes from vegetative cells is a process that involves morphological and biochemical modifications. Here we applied a single cell approach to quantify genome and ribosome content of akinetes and vegetative cells in Aphanizomenon ovalisporum (Cyanobacteria). Vegetative cells of A. ovalisporum were naturally polyploid and contained on average 8 genome copies per cell. However, the chromosomal content of akinetes increased up to 450 copies, with an average value of 119 genome copies per akinete, 15 fold higher that in vegetative cells. Based on fluorescence in situ hybridization with a probe targeting 16S rRNA and detection with confocal laser scanning microscopy we conclude that ribosomes accumulated in akinetes to a higher level than that found in vegetative cells. We further present evidence that this massive accumulation of nucleic acids in akinetes is likely supported by phosphate supplied from inorganic polyphosphate bodies that were abundantly present in vegetative cells, but notably absent from akinetes. These results are interpreted in the context of cellular investments for proliferation following long term dormancy, as the high nucleic acid content would provide the basis for extended survival, rapid resumption of metabolic activity and cell division upon germination.
    Description: Supported by the Gruss Lipper Foundation research award (AS). This study was part of the Joint German-Israeli-Project (FKZ 02WT0985, WR803) funded by the German Ministry of Research and Technology (BMBF) and Israel Ministry of Science and Technology (MOST).
    Keywords: Akinetes ; Cyanobacteria ; Dormancy ; Fluorescence in situ hybridization ; Polyphosphate ; Polyploidy ; Laser microdissection microscopy
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2014. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Acta Oceanologica Sinica 34 (2015):92-113, doi:10.1007/s13131-015-0650-7.
    Description: Cobalt-rich ferromanganese is an important seafloor mineral and is abundantly present in the seamount crusts. Such crusts form potential hotspots for biogeochemical activity and microbial diversity, yet our understanding of their microbial communities is lacking. In this study, we used a cultivation-independent approach to recover genomic information and derive ecological functions of the microbes in a sediment sample collected from the cobalt-rich ferromanganese crust of a seamount region in the central Pacific. A total of 78 distinct clones were obtained by fosmid library screening with a 16S rRNA based PCR method. Proteobacteria and MGI Thaumarchaeota dominated the bacterial and archaeal 16S rRNA gene sequence results in the microbial community. Nine fosmid clones were sequenced and annotated. Numerous genes encoding proteins involved in metabolic functions and heavy metal resistance were identified, suggesting alternative metabolic pathways and stress responses that are essential for microbial survival in the cobalt-rich ferromanganese crust. In addition, genes that participate in the synthesis of organic acids and exoploymers were discovered. Reconstruction of the metabolic pathways revealed that the nitrogen cycle is an important biogeochemical process in the cobalt-rich ferromanganese crust. In addition, horizontal gene transfer (HGT) events have been observed, and most of them came from bacteria, with some occurring in archaea and plants. Clone W4-93a, belonging to MGI Thaumarchaeota, contained a region of gene synteny. Comparative analyses suggested that a high frequency of HGT events as well as genomic divergence play important roles in the microbial adaption to the deep-sea environment.
    Description: China Ocean Mineral Resources R & D Association (COMRA) Special Foundation (No. DY125-15-R-03 and DY125-13-E-01); the National Natural Science Foundation of China (No. 41276173); the Zhejiang Provincial Natural Science Foundation of China (No. LQ13D060002) and the Scientific Research Fund of the Second Institute of Oceanography, SOA (No. JT1305).
    Description: 2016-04-17
    Keywords: Seamount ; Cobalt-rich ferromanganese crust ; Metagenome ; Horizontal gene transfer
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Format: application/vnd.ms-excel
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2015. This is the author's version of the work. It is posted here by permission of John Wiley & Sons for personal use, not for redistribution. The definitive version was published in Proteomics 15 (2015): 3521-3531, doi:10.1002/pmic.201400630.
    Description: Proteomics has great potential for studies of marine microbial biogeochemistry, yet high microbial diversity in many locales presents us with unique challenges. We addressed this challenge with a targeted metaproteomics workflow for NtcA and P-II, two nitrogen regulatory proteins, and demonstrated its application for cyanobacterial taxa within microbial samples from the Central Pacific Ocean. Using METATRYP, an open-source Python toolkit, we examined the number of shared (redundant) tryptic peptides in representative marine microbes, with the number of tryptic peptides shared between different species typically being 1% or less. The related cyanobacteria Prochlorococcus and Synechococcus shared an average of 4.8+1.9% of their tryptic peptides, while shared intraspecies peptides were higher, 13+15% shared peptides between 12 Prochlorococcus genomes. An NtcA peptide was found to target multiple cyanobacteria species, whereas a P-II peptide showed specificity to the high-light Prochlorococcus ecotype. Distributions of NtcA and P-II in the Central Pacific Ocean were similar except at the Equator likely due to differential nitrogen stress responses between Prochlorococcus and Synechococcus. The number of unique tryptic peptides coded for within three combined oceanic microbial metagenomes was estimated to be ~4x107, 1000-fold larger than an individual microbial proteome and 27-fold larger than the human proteome, yet still 20 orders of magnitude lower than the peptide diversity possible in all protein space, implying that peptide mapping algorithms should be able to withstand the added level of complexity in metaproteomic samples.
    Description: This research was funded by the Gordon and Betty Moore Foundation and the US National Science Foundation under grant numbers 3782, 3934, OCE-1260233, OCE-1233261, OCE-1220484, OCE-1333212 and OCE-1155566, and the Center for Microbial Oceanography Research and Education (C-MORE).
    Description: 2016-06-11
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2015. This is the author's version of the work. It is posted here by permission of National Academy of Sciences for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences of the United States of America 112 (2015): 9944-9949, doi:10.1073/pnas.1509448112.
    Description: Marine Synechococcus are some of the most diverse and ubiquitous phytoplankton, and iron (Fe) is an essential micronutrient that limits productivity in many parts of the ocean. To investigate how coastal and oceanic Atlantic Synechococcus strains acclimate to Fe availability, we compared the growth, photophysiology, and quantitative proteomics of two Synechococcus strains from different Fe regimes. Synechococcus strain WH8102, from a region in the southern Sargasso Sea that receives substantial dust deposition, showed impaired growth and photophysiology as Fe declined, yet utilized few acclimation responses. Coastal WH8020, from the dynamic, seasonally variable New England shelf, displayed a multi-tiered, hierarchical cascade of acclimation responses with different Fe thresholds. The multi-tiered response included changes in Fe acquisition, storage, and photosynthetic proteins, substitution of flavodoxin for ferredoxin, and modified photophysiology, all while maintaining remarkably stable growth rates over a range of Fe concentrations. Modulation of two distinct ferric uptake regulator (Fur) proteins that coincided with the multi-tiered proteome response was found, implying the coastal strain has different regulatory threshold responses to low Fe availability. Low nitrogen (N) and phosphorus (P) availability in the open ocean may favor the loss of Fe response genes when Fe availability is consistent over time, whereas these genes are retained in dynamic environments where Fe availability fluctuates and N and P are more abundant.
    Description: This work was supported by a National Science Foundation Postdoctoral Research Fellowship in Biology to K.R.M.M. (NSF 1103575), National Science Foundation Oceanography grants OCE-1220484, OCE-0928414, OCE-1233261, OCE- 1155566, OCE-1131387, and OCE-0926092, as well as Gordon and Betty Moore Foundation grants 3782 and 3934.
    Keywords: Iron adaptation ; Synechococcus ; Photosynthesis ; Quantitative proteomics
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2022-05-25
    Description: Author Posting. © Association for the Sciences of Limnology and Oceanography, 2013. This article is posted here by permission of Association for the Sciences of Limnology and Oceanography for personal use, not for redistribution. The definitive version was published in Limnology and Oceanography 58 (2013): 1959-1971, doi:10.4319/lo.2013.58.6.1959.
    Description: We assessed the significance of cyanate utilization in marine primary productivity from the distribution of a dedicated transporter (encoded by cynABD) in different ocean environments. Several lines of evidence indicate that the cyanate utilization potential is associated mainly with surface populations of Prochlorococcus. Spatial and temporal dimensions of cynA, cynS, and ntcA expression by picocyanobacteria in the northern Red Sea supported our previous finding that cynA transcripts accumulate under more stringent N-limiting conditions. At the same time, cyanate utilization appeared to be more complex than suggested in our earlier publication, as we showed that picocyanobacteria also express their cyanate utilization potential under conditions where labile organic N compounds, such as urea, accumulate. These include N-sufficient transient conditions that result from nutrient upwelling during early mixing events in autumn as well as during spring bloom conditions that follow deep mixing events. Our finding that cynA occurrence is common in diverse marine environments suggests that cyanate utilization may be of a more fundamental importance to picophytoplankton productivity than previously considered.
    Description: Financial support for experimental work was provided by Israel Science Foundation grant 135/05; DNA sequencing, phylogenetic analyses, data processing, and manuscript preparation were supported by the National Science Foundation grant 1155566 in Chemical Oceanography.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Progress In Oceanography 91 (2011): 545–560, doi:10.1016/j.pocean.2011.09.001.
    Description: In the seasonally stratified Gulf of Aqaba Red Sea, both NO2- release by phytoplankton and NH4+ oxidation by nitrifying microbes contributed to the formation of a primary nitrite maximum (PNM) over different seasons and depths in the water column. In the winter and during the days immediately following spring stratification, NO2- formation was strongly correlated (R2=0.99) with decreasing irradiance and chlorophyll, suggesting that incomplete NO3- reduction by light limited phytoplankton was a major source of NO2-. However, as stratification progressed, NO2- continued to be generated below the euphotic depth by microbial NH4+ oxidation, likely due to differential photoinhibition of NH4+ and NO2- oxidizing populations. Natural abundance stable nitrogen isotope analyses revealed a decoupling of the δ15N and δ18O in the combined NO3- and NO2- pool, suggesting that assimilation and nitrification were co-occurring in surface waters. As stratification progressed, the δ15N of particulate N below the euphotic depth increased from -5‰ to up to +20‰. N uptake rates were also influenced by light; based on 15N tracer experiments, assimilation of NO3-, NO2-, and urea was more rapid in the light (434±24, 94±17, and 1194±48 nmol N L-1 day-1 respectively) than in the dark (58±14, 29±14, and 476±31 nmol N L-1 day-1 respectively). Dark NH4+ assimilation was 314±31 nmol N L-1 day-1, while light NH4+ assimilation was much faster, resulting in complete consumption of the 15N spike in less than 7 hour from spike addition. The overall rate of coupled urea mineralization and NH¬4+ oxidation (14.1±7.6 nmol N L-1 day-1) was similar to that of NH¬4+ oxidation alone (16.4±8.1 nmol N L-1 day-1), suggesting that for labile dissolved organic N compounds like urea, mineralization was not a rate limiting step for nitrification. Our results suggest that assimilation and nitrification compete for NH4+ and that N transformation rates throughout the water column are influenced by light over diel and seasonal cycles, allowing phytoplankton and nitrifying microbes to contribute jointly to PNM formation. We identify important factors that influence the N cycle throughout the year, including light intensity, substrate availability, and microbial community structure. These processes could be relevant to other regions worldwide where seasonal variability in mixing depth and stratification influence the contributions of phytoplankton and non-photosynthetic microbes to the N cycle.
    Description: This research was supported under the North Atlantic Treaty Organization (NATO) Science for Peace Grant SfP 982161 to AP and AFP, a grant from the Koret Foundation to AP, a National Science Foundation Biological Oceanography grant to AP, the Israel Science Foundation grant 135/05 to AFP, and research grant 8330-06 from the Geological Society of America to KRMM.
    Keywords: Nitrogen cycle ; Primary nitrite maximum ; Nitrification ; Light ; Mixing and stratification ; Spring bloom
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of American Society for Microbiology for personal use, not for redistribution. The definitive version was published in Applied and Environmental Microbiology 77 (2011): 7647-7655, doi:10.1128/AEM.05565-11.
    Description: The leaf surfaces of Tamarix, a salt secreting desert tree, harbor a diverse community of microbial epiphytes. This ecosystem presents a unique set of ecological characteristics and imposes a set of extreme stress conditions. The composition of the microbial community along ecological gradients was studied from analyses of microbial richness and diversity in the phyllosphere of three Tamarix species in the Mediterranean and Dead Sea regions in Israel, and in two locations in the USA. Over 200,000 sequences of the 16S-V6 and 18S-V9 hypervariable regions revealed a diverse community, with 788 bacterial and 64 eukaryotic genera, but only one archaeal genus. Both geographic location and tree species were determinants of microbial community structures, with the former being more dominant. Tree leaves of all three species in the Mediterranean region were dominated by Halomonas and Halobacteria, whereas trees from the Dead Sea area were dominated by Actinomycetales and Bacillales. Our findings demonstrate that microbial phyllosphere communities on different Tamarix species are highly similar in the same locale, whereas trees of the same species that grow in different climatic regions host distinct microbial communities.
    Description: Research was supported in part by the US-Israel Binational Science Foundation grant number 2006324 to SB and SEL. OF and SB are indebted to the Gruss-Lipper Family Foundation for summer research fellowships (2009 and 2010) at the Marine Biology Laboratory (Woods Hole, MA, USA) that supported pyrosequencing and data analysis.
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Microbiology 5 (2015): 794, doi:10.3389/fmicb.2014.00794.
    Description: Atmospheric deposition is a major source of trace metals in marine surface waters and supplies vital micronutrients to phytoplankton, yet measured aerosol trace metal solubility values are operationally defined, and there are relatively few multi-element studies on aerosol-metal solubility in seawater. Here we measure the solubility of aluminum (Al), cadmium (Cd), cobalt (Co), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), lead (Pb), and zinc (Zn) from natural aerosol samples in seawater over a 7 days period to (1) evaluate the role of extraction time in trace metal dissolution behavior and (2) explore how the individual dissolution patterns could influence biota. Dissolution behavior occurs over a continuum ranging from rapid dissolution, in which the majority of soluble metal dissolved immediately upon seawater exposure (Cd and Co in our samples), to gradual dissolution, where metals dissolved slowly over time (Zn, Mn, Cu, and Al in our samples). Additionally, dissolution affected by interactions with particles was observed in which a decline in soluble metal concentration over time occurred (Fe and Pb in our samples). Natural variability in aerosol chemistry between samples can cause metals to display different dissolution kinetics in different samples, and this was particularly evident for Ni, for which samples showed a broad range of dissolution rates. The elemental molar ratio of metals in the bulk aerosols was 23,189Fe: 22,651Al: 445Mn: 348Zn: 71Cu: 48Ni: 23Pb: 9Co: 1Cd, whereas the seawater soluble molar ratio after 7 days of leaching was 11Fe: 620Al: 205Mn: 240Zn: 20Cu: 14Ni: 9Pb: 2Co: 1Cd. The different kinetics and ratios of aerosol metal dissolution have implications for phytoplankton nutrition, and highlight the need for unified extraction protocols that simulate aerosol metal dissolution in the surface ocean.
    Description: This work was supported by NSF-OCE grant 0850467 to Adina Paytan, NSF-OCE grant 1233261 to Mak A. Saito, and NATO Science for Peace Grant to Adina Paytan and Anton F. Post (SfP 982161). Katherine R. M. Mackey was supported by a National Science Foundation Postdoctoral Research Fellowship in Biology (Grant No. NSF 1103575) and Chia-Te Chien by an international graduate student fellowship from the ministry of education, Taiwan.
    Keywords: Aerosols ; Atmospheric deposition ; Phytoplankton ; Trace metals ; Ligands
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2022-05-26
    Description: © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Microbiology 5 (2014): 359, doi:10.3389/fmicb.2014.00359.
    Description: Cyanobacteria thrive in every illuminated aquatic environment known, contributing at least 25% of primary productivity worldwide. Given their importance in carbon and nutrient cycles, cyanobacteria are essential geochemical agents that have shaped the composition of the Earth's crust, oceans and atmosphere for billions of years. The high diversity of cyanobacteria is reflected in the panoply of unique physiological adaptations across the phylum, including different strategies to optimize light harvesting or sustain nitrogen fixation, but also different lifestyles like psychrotrophy, and oligotrophy. Some cyanobacteria produce secondary metabolites of cryptic function, many of which are toxic to eukaryotes. Consequently, bloom-forming toxic cyanobacteria are global hazards that are of increasing concern in surface waters affected by anthropogenic nutrient loads and climate change.
    Keywords: Cyanobacteria ; HABs ; Prochlorococcus ; Synechococcus ; Nitrogen fixation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...