GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Nature Publishing Group  (1)
  • 1
    Publication Date: 2022-05-26
    Description: © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in ISME Journal 9 (2015): 166–179, doi:10.1038/ismej.2014.107.
    Description: Sampling ecosystems, even at a local scale, at the temporal and spatial resolution necessary to capture natural variability in microbial communities are prohibitively expensive. We extrapolated marine surface microbial community structure and metabolic potential from 72 16S rRNA amplicon and 8 metagenomic observations using remotely sensed environmental parameters to create a system-scale model of marine microbial metabolism for 5904 grid cells (49 km2) in the Western English Chanel, across 3 years of weekly averages. Thirteen environmental variables predicted the relative abundance of 24 bacterial Orders and 1715 unique enzyme-encoding genes that encode turnover of 2893 metabolites. The genes’ predicted relative abundance was highly correlated (Pearson Correlation 0.72, P-value 〈10−6) with their observed relative abundance in sequenced metagenomes. Predictions of the relative turnover (synthesis or consumption) of CO2 were significantly correlated with observed surface CO2 fugacity. The spatial and temporal variation in the predicted relative abundances of genes coding for cyanase, carbon monoxide and malate dehydrogenase were investigated along with the predicted inter-annual variation in relative consumption or production of ~3000 metabolites forming six significant temporal clusters. These spatiotemporal distributions could possibly be explained by the co-occurrence of anaerobic and aerobic metabolisms associated with localized plankton blooms or sediment resuspension, which facilitate the presence of anaerobic micro-niches. This predictive model provides a general framework for focusing future sampling and experimental design to relate biogeochemical turnover to microbial ecology.
    Description: This work was supported by the US Department of Energy under Contract DE-AC02-06CH11357 and by the Howard Hughes Medical Institute.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/msword
    Format: image/jpeg
    Format: application/pdf
    Format: text/plain
    Format: application/zip
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...