GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
  • 11
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Gerringa, Loes J A; Alderkamp, Anne-Carlijn; Laan, Patrick; Thuróczy, Charles-Edouard; de Baar, Hein J W; Mills, Matthew M; van Dijken, Gert L; van Haren, Hans; Arrigo, Kevin R (2012): Iron from melting glaciers fuels the phytoplankton blooms in Amundsen Sea (Southern Ocean): Iron biogeochemistry. Deep Sea Research Part II: Topical Studies in Oceanography, 71-76, 16-31, https://doi.org/10.1016/j.dsr2.2012.03.007
    Publication Date: 2023-12-13
    Description: Dissolved iron (DFe) and total dissolvable Fe (TDFe) were measured in January-February 2009 in Pine Island Bay, as well as in the Pine Island and Amundsen polynyas (Amundsen Sea, Southern Ocean). Iron (Fe) has been shown to be a limiting nutrient for phytoplankton growth, even in the productive continental shelves surrounding the Antarctic continent. However, the polynyas of the Amundsen Sea harbor the highest concentrations of phytoplankton anywhere in Antarctica. Here we present data showing the likely sources of Fe that enable such a productive and long lasting phytoplankton bloom. Circumpolar Deep Water (CDW) flows over the bottom of the shelf into the Pine Island Bay where DFe and TDFe were observed to increase from 0.2 to 0.4 nM DFe and from 0.3-4.0 to 7-14 nM TDFe, respectively. At the southern end of Pine Island Bay, the CDW upwelled under the Pine Island Glacier, bringing nutrients (including Fe) to the surface and melting the base of the glacier. Concentrations of DFe in waters near the Pine Island Glacier and the more westward lying Crosson, Dotson, and Getz Ice Shelves varied between 0.40 and 1.31 nM, depending on the relative magnitude of upwelling, turbulent mixing, and melting. These values represent maximum concentrations since associated ligands (which increase the solubility of Fe in seawater) were saturated with Fe (Thuroczy et al., 2012, doi:10.1016/j.dsr2.2012.03.009). The TDFe concentrations were very high compared to what previously has been measured in the Southern Ocean, varying between 3 and 106 nM. In the Pine Island Polynya, macronutrients and DFe were consumed by the phytoplankton bloom and concentrations were very low. We calculate that atmospheric dust contributed 〈 1% of the Fe necessary to sustain the phytoplankton bloom, while vertical turbulent eddy diffusion from the sediment, sea ice melt, and upwelling contributed 1.0-3.8%, 0.7-2.9%, and 0.4-1.7%, respectively. The largest source was Fe input from the PIG, which could satisfy the total Fe demand by the phytoplankton bloom by lateral advection of Fe over a range of 150 km from the glacier. The role of TDFe as a phytoplankton nutrient remains unclear, perhaps representing an important indirect Fe source via dissolution and complexation by dissolved organic ligands (Gerringa et al., 2000, doi:10.1016/S0304-4203(99)00092-4; Borer et al., 2005, doi:10.1016/j.marchem.2004.08.006).
    Keywords: Area/locality; Date/Time of event; DynaLiFe; Eddy diffusivity, vertical turbulent; Estimated by calculating the Thorpe scale and from CTD data; Event label; International Polar Year (2007-2008); IPY; Latitude of event; Longitude of event; MULT; Multiple investigations; Nathaniel B. Palmer; NBP0901; NBP0901_102; NBP0901_103; NBP0901_104; NBP0901_105; NBP0901_106; NBP0901_107; NBP0901_108; NBP0901_113; NBP0901_114; NBP0901_119; NBP0901_13; NBP0901_14; NBP0901_140; NBP0901_142; NBP0901_148; NBP0901_153; NBP0901_158; NBP0901_16; NBP0901_55; NBP0901_86; NBP0901_88; NBP0901_91; NBP0901_99; Southern Ocean; Station label
    Type: Dataset
    Format: text/tab-separated-values, 69 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Palmer, Molly A; Arrigo, Kevin R; Mundy, Christopher John; Ehn, Jens K; Gosselin, Michel; Barber, David G; Martin, Johannie; Alou, Eva; Roy, Suzanne; Tremblay, Jean-Éric (2011): Spatial and temporal variation of photosynthetic parameters in natural phytoplankton assemblages in the Beaufort Sea, Canadian Arctic. Polar Biology, 34(12), 1915-1928, https://doi.org/10.1007/s00300-011-1050-x
    Publication Date: 2024-04-27
    Description: During summer 2008, as part of the Circumpolar Flaw Lead system study, we measured phytoplankton photosynthetic parameters to understand regional patterns in primary productivity, including the degree and timescale of photoacclimation and how variability in environmental conditions influences this response. Photosynthesis-irradiance measurements were taken at 15 sites primarily from the depth of the subsurface chlorophyll a (Chl a) maximum (SCM) within the Beaufort Sea flaw lead polynya. The physiological response of phytoplankton to a range of light levels was used to assess maximum rates of carbon (C) fixation (P*m), photosynthetic efficiency (alpha*), photoacclimation (Ek), and photoinhibition (beta*). SCM samples taken along a transect from under ice into open water exhibited a 〉3-fold increase in alpha* and P*m, showing these parameters can vary substantially over relatively small spatial scales, primarily in response to changes in the ambient light field. Algae were able to maintain relatively high rates of C fixation despite low light at the SCM, particularly in the large (〉5 µm) size fraction at open water sites. This may substantially impact biogenic C drawdown if species composition shifts in response to future climate change. Our results suggest that phytoplankton in this region are well acclimated to existing environmental conditions, including sea ice cover, low light, and nutrient pulses. Furthermore, this photoacclimatory response can be rapid and keep pace with a developing SCM, as phytoplankton maintain photosynthetic rates and efficiencies in a narrow ''shade-acclimated'' range.
    Keywords: International Polar Year (2007-2008); IPY
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2024-04-27
    Keywords: Amundsen Gulf, Canada; Chlorophyll a; Darnley_Bay08; DATE/TIME; DEPTH, water; Depth of the euphotic zone; Event label; Fixation of carbon in chlorophyll; International Polar Year 2007-2008; IPY-4; Light absorption by phytoplankton per chlorophyll a; Mixed layer depth; MULT; Multiple investigations; Nitrate; Photoinhibition in carbon per chlorophyll a; Photosynthetic efficiency, carbon production; Quantum yield; Radiation, photosynthetically active; Ratio; Sample comment; Sample type; Temperature, water
    Type: Dataset
    Format: text/tab-separated-values, 104 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2024-04-27
    Keywords: Ammonium; Amundsen Gulf, Canada; Beaufort Sea; CCGSA_4-10_CFL08; CCGS Amundsen; CFL08_1200; CFL08_1216-1; CFL08_405B-1; CFL08_421-2; CFL08_435; CFL08_6006-2; Chlorophyll a; Circumpolar Flaw Lead Leg 4-10a; Darnley_Bay08; DATE/TIME; DEPTH, water; Depth of the euphotic zone; Elevation, mean; Event label; Franklin_Bay08; International Polar Year 2007-2008; IPY-4; Latitude of event; Longitude of event; Mixed layer depth; MOOR; Mooring; MULT; Multiple investigations; Nitrate and Nitrite; Phosphate; Radiation, photosynthetically active; Salinity; Silicate; Station label; Temperature, water
    Type: Dataset
    Format: text/tab-separated-values, 164 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 15
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 450 (2007), S. 491-492 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Marine phytoplankton are major players in the carbon cycle, accounting for about 50% of the global biological uptake of carbon dioxide. Near the ocean surface, these single-celled organisms use light energy to convert CO2 into organic molecules for building cellular structures and ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 16
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 437 (2005), S. 349-355 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The way that nutrients cycle through atmospheric, terrestrial, oceanic and associated biotic reservoirs can constrain rates of biological production and help structure ecosystems on land and in the sea. On a global scale, cycling of nutrients also affects the concentration of atmospheric carbon ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 17
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillian Magazines Ltd.
    Nature 434 (2005), S. 211-214 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Biological productivity in most of the world's oceans is controlled by the supply of nutrients to surface waters. The relative balance between supply and removal of nutrients—including nitrogen, iron and phosphorus—determines which nutrient limits phytoplankton growth. ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2017-11-29
    Description: The responses of sea ice microalgae to variation in ambient irradiance (0 to 150 μE · m−2· s−1), temperature (–6° to + 6° C), and salinity (0 to 100 ppt) were tested to determine whether these variables act independently or in concert to influence rates of microalgal photosynthesis. The photosynthetic efficiency and maximum photosynthetic rate for sea ice microalgae increased as a function of incubation temperature between -6° and + 6° C. Furthermore, photosynthetic efficiency, maximum photosynthetic rate, and quantum yield were greatest at salinities between SO and 50 ppt. In contrast, the mean specific absorption coefficients were lowest near seawater salinities, and the saturating irradiance, Is, appeared to be inversely proportional to salinity. Results also suggest that the effects of salinity on the growth of sea ice microalgae are independent of those elicited by temperature or light, and that the functional relationship between salinity and light or temperature is multiplicative. This information is essential to the proper formulation of algorithms used to describe algal growth in environments where light, temperature, and salinity are changing simultaneously, such as within sea ice or within the water column at the marginal ice edge zone.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  Nature Geoscience, 3 (6). pp. 412-416.
    Publication Date: 2017-12-21
    Description: The elemental stoichiometry of sea water and particulate organic matter is remarkably similar. This observation led Redfield to hypothesize that the oceanic ratio of nitrate to phosphate is controlled by the remineralization of phytoplankton biomass1. The Redfield ratio is used universally to quantitatively link the marine nitrogen and phosphorus cycles in numerous biogeochemical applications2,3,4. Yet, empirical and theoretical studies show that the ratio of nitrogen to phosphorus in phytoplankton varies greatly with taxa5,6 and growth conditions7,8,9. Here we present a dynamic five-box ecosystem model showing that non-Redfield utilization of dissolved nitrogen and phosphorus by non-nitrogen-fixing phytoplankton controls the magnitude and distribution of nitrogen fixation. In our simulations, systems dominated by rapidly growing phytoplankton with low nitrogen to phosphorus uptake ratios reduce the phosphorus available for nitrogen fixation. In contrast, in systems dominated by slow-growing phytoplankton with high nitrogen to phosphorus uptake ratios nitrogen deficits are enhanced, and nitrogen fixation is promoted. We show that estimates of nitrogen fixation are up to fourfold too high when non-Redfield uptake stoichiometries are ignored. We suggest that the relative abundance of fast- and slow-growing phytoplankton controls the amount of new nitrogen added to the ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-07-08
    Description: Surface delta(15)N(PON) increased 3.92 +/- 0.48 over the course of 20 days following additions of iron (Fe) to an eddy in close proximity to the Antarctic Polar Front in the Atlantic sector of the Southern Ocean. The change in delta(15)N(PON) was associated with an increase in the 〉20 mu m size fraction, leading to a maximal difference of 6.23 between the 〉20 mu m and 〈20 mu m size fractions. Surface delta(13)C(POC) increased 1.18 +/- 0.31 over the same period. After a decrease in particulate organic matter in the surface layer, a second phytoplankton community developed that accumulated less biomass, had a slower growth rate and was characterized by an offset of 1.56 in delta(13)C(POC) relative to the first community. During growth of the second community, surface delta(13)C(POC) further increased 0.83 +/- 0.13. Here we speculate on ways that carboxylation, nitrogen assimilation, substrate pool enrichment and community composition may have contributed to the gradual increase in delta(13)C(POC) associated with phytoplankton biomass accumulation, as well as the systematic offset in delta(13)C(POC) between the two phytoplankton communities.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...