GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Language
  • 1
    Online Resource
    Online Resource
    Cambridge :Cambridge University Press,
    Keywords: Phytoplankton -- Composition. ; Electronic books.
    Description / Table of Contents: Pigments act as tracers to elucidate the fate of phytoplankton in the oceans, often associated with important biogeochemical cycles. This book describes recent advances in the study and use of phytoplankton pigments. Invaluable as a reference for students, researchers and professionals in aquatic science, biogeochemistry and remote sensing.
    Type of Medium: Online Resource
    Pages: 1 online resource (892 pages)
    Edition: 1st ed.
    ISBN: 9781139185752
    Series Statement: Cambridge Environmental Chemistry Series
    DDC: 579.8/1776
    Language: English
    Note: Cover -- PHYTOPLANKTON PIGMENTS -- CAMBRIDGE ENVIRONMENTAL CHEMISTRY SERIES -- Title -- Copyright -- Dedication -- Contents -- Contributors -- Preface -- Acknowledgements -- Abbreviations and symbols -- Pigment names -- Part I Chlorophylls and carotenoids -- 1 Microalgal classes and their signature pigments -- 1.1 Introduction -- 1.2 Algal classification -- 1.2.1 The 'protistan perspective' -- 1.2.2 The classical 'pigment perspective' -- 1.3 Origins of microalgal plastids -- 1.4 Biological characteristics of currently recognized photosynthetic microalgal classes -- 1.4.1 Prokaryotes: the division Cyanophyta -- 1.4.1.1 Cyanophytes (Cyanophyceae) -- including species previously known as Prochlorophytes (Prochlorophyceae) -- 1.4.2 Eukaryotes: the division Glaucocystophyta -- 1.4.3 Eukaryotes: the red radiation -- 1.4.3.1 The division Rhodophyta -- 1.4.3.2 The division Heterokontophyta -- 1.4.3.2.1 Diatoms (class Bacillariophyceae -- division Heterokontophyta) -- 1.4.3.2.2 Bolidophytes (class Bolidophyceae -- division Heterokontophyta) -- 1.4.3.2.3 Chrysophytes (class Chrysophyceae -- division Heterokontophyta) -- 1.4.3.2.4 Silicoflagellates (class Dictyochophyceae -- division Heterokontophyta) -- 1.4.3.2.5 Eustigmatophytes (class Eustigmatophyceae -- division Heterokontophyta) -- 1.4.3.2.6 Pelagophytes (class Pelagophyceae -- division Heterokontophyta) -- 1.4.3.2.7 Phaeothamniophytes (class Phaeothamniophyceae -- division Heterokontophyta) -- 1.4.3.2.8 Pinguiophytes (class Pinguiophyceae -- division Heterokontophyta) -- 1.4.3.2.9 Raphidophytes (chloromonads) (class Raphidophyceae -- division Heterokontophyta) -- 1.4.3.2.10 Synurophytes (Class Synurophyceae -- Division Heterokontophyta) -- 1.4.3.3 The division Haptophyta -- 1.4.3.3.1 Pavlovophytes (class Pavlovophyceae -- division Haptophyta). , 1.4.3.3.2 Characteristics of golden-brown algae (class Prymnesiophyceae ≡ Coccolithophyceae) -- 1.4.3.4 The division Cryptophyta -- 1.4.3.4.1 Class Cryptophyceae -- division Cryptophyta -- 1.4.3.5 The division Dinophyta -- 1.4.3.5.1 Class Dinophyceae -- division Dinophyta -- 1.4.4 Eukaryotes: the green radiation -- 1.4.4.1 The division Euglenophyta -- 1.4.4.2 The division Chlorarachniophyta -- 1.4.4.3 The division Chlorophyta (Classes Chlorophyceae, Prasinophyceae and Trebouxiophyceae) -- 1.4.4.4 The division Streptophyta -- 1.5 Pigment characteristics of currently recognized photosynthetic microalgal classes -- 1.5.1 Introduction -- 1.5.2 Signature pigments in the cyanobacterial lineage, the Glaucocystophyta and the red and green algal lineages -- 1.5.3 Future developments -- Acknowledgements -- Glossary of important terms used in protistan taxonomy -- Abbreviations -- References -- 2 Recent advances in chlorophyll and bacteriochlorophyll biosynthesis -- 2.1 Introduction -- 2.2 Structures of chlorophylls -- 2.2.1 Phytoporphyrin-type chlorophylls -- 2.2.2 Phytochlorin-type chlorophylls -- 2.2.3 Bacteriophytochlorin-type chlorophylls -- 2.3 Biosynthesis of protoporphyrin IX -- 2.3.1 Formation of 5-aminolevulinic acid and its regulation -- 2.3.2 Distribution of the C4+1 pathway -- 2.3.3 Distribution of the C5 pathway -- 2.3.4 Conversion of 5-aminolevulinate to monopyrrolic porphobilinogen -- 2.3.5 Formation of uroporphyrinogen III from porphobilinogen -- 2.3.6 Decarboxylation of uroporphyrinogen III to coproporphyrinogen III -- 2.3.7 Oxidative decarboxylation of coproporhyrinogen III to protoporphyrinogen IX -- 2.3.8 Oxidation of protoporphyrinogen IX to protoporphyrin IX -- 2.4 Biosynthesis of chlorophylls -- 2.4.1 Formation of Mg-protoporphyrin IX by Mg-chelatase. , 2.4.2 Formation of Mg-protoporphyrin IX-monomethylester by S-adenosylmethionine: Mg-protoporphyrin IX methyltransferase -- 2.4.3 Formation of the isocyclic ring E by Mg-protoporphyrin IX-monomethylester cyclase -- 2.4.3.1 The hydratase pathway -- 2.4.3.2 The oxygenase pathway -- 2.4.4 Protochlorophyllide a formation by 8-vinyl reductase -- 2.4.5 Reduction of ring D by protochlorophyllide a oxidoreductases -- 2.4.5.1 Light-dependent protochlorophyllide oxidoreductases -- 2.4.5.2 Light-independent (dark) protochlorophyllide oxidoreductases -- 2.4.6 Conversion of chlorophyllide a to chlorophyllide b by chlorophyllide a oxygenase -- 2.4.7 Reduction of chlorophyll(ide) b to chlorophyll(ide) a: the chlorophyll cycle -- 2.4.8 Esterification of chlorophyllides a and b to chlorophylls a and b by chlorophyll synthase -- 2.4.9 Formation of bacteriochlorophyll a: reduction of ring B by chlorin-reductase -- 2.4.10 Unusual chlorophylls and unusual side chains -- 2.4.10.1 In the phytoporphyrin family -- 2.4.10.2 In the phytochlorin family -- 2.4.10.3 In the bacteriophytochlorin family -- 2.5 Concluding remarks -- Acknowledgements -- Abbreviations -- References -- 3 Carotenoid metabolism in phytoplankton -- 3.1 Introduction -- 3.2 Biosynthesis of carotenes -- 3.2.1 Formation of the active isoprene -- 3.2.2 Formation of the first carotenoid phytoene -- 3.2.3 Formation of lycopene -- 3.2.4 Formation of cyclic carotenes -- 3.2.5 Formation of aromatic carotenes in cyanobacteria -- 3.3 Biosynthesis of xanthophylls -- 3.3.1 Hydroxylation -- 3.3.2 Epoxidation, de-epoxidation and the xanthophyll cycles -- 3.3.3 Formation of light-harvesting xanthophylls -- 3.3.4 Formation of ketocarotenoids -- 3.3.5 Formation of xanthophylls specific to cyanobacteria -- 3.4 Carotenoid catabolism and carotenoids as precursors of other physiologically important metabolites. , 3.4.1. Abscisic acid -- 3.4.2 Retinal -- 3.4.3 Strigolactones -- 3.4.4 Other products of carotenoid cleavage -- 3.5 Outlook -- Acknowledgements -- Abbreviations -- References -- Part II Methodology guidance -- 4 New HPLC separation techniques -- 4.1 Introduction -- 4.2 HPLC algal pigment methods published since the 1997 UNESCO monograph -- 4.3 Separation principles and applications of new HPLC pigment techniques -- 4.3.1 Polymeric bonded phases -- 4.3.2 Monomeric C8 bonded phases -- 4.3.3 Mobile phase additives -- 4.3.4 Column temperature -- 4.4 Choice of HPLC method -- 4.5 Applications -- 4.5.1 Analysis of pigments from pelagic phytoplankton communities -- 4.5.2 Analysis of pigments from microphytobenthos communities -- 4.5.3 Analysis of degradation products -- 4.5.4 Analysis of bacteriochlorophylls -- References -- 5 The importance of a quality assurance plan for method validation and minimizing uncertainties in the HPLC analysis of phytoplankton pigments -- 5.1 Introduction -- 5.2 Method validation -- 5.2.1 The analytical requirement -- 5.2.2 Performance parameters -- 5.2.2.1 Specificity -- 5.2.2.2 Limits of detection and quantitation -- 5.2.2.3 Working and linear ranges -- 5.2.2.4 Calibration -- 5.2.2.5 Accuracy and precision -- 5.2.2.6 Ruggedness -- 5.3 Results from inter-laboratory comparisons -- 5.3.1 Precision -- 5.3.2 Accuracy -- 5.3.3 Validity of the round-robin approach -- 5.4 Performance metrics -- 5.5 Quality assurance plan -- 5.5.1 QC measurements and QA applications -- 5.5.1.1 Pigment resolution and retention time precision (daily) -- 5.5.1.2 Analysis precision and carryover (daily) -- 5.5.1.3 Chla calibration accuracy (daily) -- 5.5.1.4 Sample extract analysis precision (daily) -- 5.5.1.5 Method precision (each sample batch or at least 5% of samples) -- 5.5.1.6 Repipette accuracy and precision (daily). , 5.5.1.7 Calibration accuracy (spectrophotometric and HPLC analysis) -- 5.5.1.8 Chla linearity (with new column installation) -- 5.5.1.9 Detector noise (variable frequency) -- 5.5.1.10 QC and QA elements from data manipulations -- 5.5.2 Control charts -- 5.6 Future directions -- Acknowledgements -- Abbreviations and symbols -- References -- Appendix 5A A symbology and vocabulary for an HPLC lexicon -- References -- 6 Quantitative interpretation of chemotaxonomic pigment data -- 6.1 Introduction -- 6.2 Qualitative assessment of data -- 6.2.1 Specific markers for algal types -- 6.3 Non-taxonomic interpretation of pigment data sets -- 6.3.1 Pigment based size classes -- 6.3.2 Ecological similarity indices -- 6.4 Mathematical tools for taxonomic interpretation of pigment data sets -- 6.4.1 Assumptions and constraints of inverse simultaneous equations and CHEMTAX -- 6.4.2 Reaching the optimum solution -- 6.4.3 Guide to quantitative chemotaxonomic interpretation of pigment data -- 6.4.3.1 Pigment data exploration -- 6.4.3.2 CHEMTAX analysis -- 6.5 Variability of marker pigment:Chl a from cultures and field studies -- 6.5.1 Pigment:Chl a ratios in culture versus field -- 6.5.2 Irradiance -- 6.5.3 Nutrients -- 6.6 Comparison with results from microscopy and other techniques -- 6.6.1 Relative strengths and weaknesses of chemotaxonomy and microscopy -- 6.6.2 Verification of pigment chemotaxonomy -- 6.6.3 Other techniques -- 6.7 Conclusions -- Acknowledgements -- References -- 7 Liquid chromatography-mass spectrometry for pigment analysis -- 7.1 LC-MS analysis of chlorophylls and carotenoids: introduction -- 7.2 Description of instrumentation -- 7.2.1 Modes of ionisation used in pigment analysis -- Fast atom bombardment (FAB) -- Atmospheric pressure chemical ionisation (APCI) -- Electrospray ionisation (ESI) -- Matrix-assisted laser desorption ionisation (MALDI). , 7.2.2 Mass analysers.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Type of Medium: Book
    Series Statement: ICES council meeting papers 1979(16)
    Language: Undetermined
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: Phytoplankton Composition ; Phytoplankton Chemotaxonomy ; Photosynthetic pigments ; Algae Classification ; Oceanography Methodology
    Description / Table of Contents: "Pigments act as tracers to elucidate the fate of phytoplankton in the world's oceans and are often associated with important biogeochemical cycles related to carbon dynamics in the oceans. They are increasingly used in in situ and remote-sensing applications, detecting algal biomass and major taxa through changes in water colour. This book is a follow-up to the 1997 volume Phytoplankton Pigments in Oceanography (UNESCO Press). Since then, there have been many advances concerning phytoplankton pigments. This book includes recent discoveries on several new algal classes particularly for the picoplankton, and on new pigments. It also includes many advances in methodologies, including liquid chromatography-mass spectrometry (LC-MS) and developments and updates on the mathematical methods used to exploit pigment information and extract the composition of phytoplankton communities. The book is invaluable primarily as a reference for students, researchers and professionals in aquatic science, biogeochemistry and remote sensing"--
    Type of Medium: Book
    Pages: XXVII, 845 S. , Ill., graph. Darst.
    ISBN: 9781107000667
    Series Statement: Cambridge environmental chemistry series
    DDC: 579.8/1776
    Language: English
    Note: Literaturangaben , Hier auch später erschienene, unveränderte Nachdrucke , Machine generated contents note: List of contributors; Preface; Acknowledgements; List of symbols; Part I. Chlorophylls and Carotenoids: 1. Microalgal classes and their signature pigments S. W. Jeffrey, S. W. Wright and M. Zapata; 2. Recent advances in chlorophyll and bacteriochlorophyll biosynthesis R. J. Porra, U. Oster and H. Scheer; 3. Carotenoid metabolism in phytoplankton M. Lohr; Part II. Methodology Guidance: 4. New HPLC separation techniques J. L. Garrido, R. L. Airs, F. Rodri;guez, L. Van Heukelem and M. Zapata; 5. The importance of a quality assurance plan for method validation and minimizing uncertainties in the HPLC analysis of phytoplankton pigments L. Van Heukelem and S. B. Hooker; Appendix: a symbology and vocabulary for an HPLC lexicon S. B. Hooker and L. Van Heukelem; 6. Quantitative interpretation of chemotaxonomic pigment data H. W. Higgins, S. W. Wright and L. Schlüter; 7. Liquid chromatography-mass spectrometry for pigment analysis R. L. Airs and J. L. Garrido; 8. Multivariate analysis of extracted pigments using spectrophotometric and spectrofluorometric methods J. Neveux, J. Seppa;la; and Y. Dandonneau; Appendix: a proven simultaneous equation assay for chlorophylls a and b using aqueous acetone and similar assays for recalcitrant algae R. J. Porra; Part III. Water-Soluble 'Pigments': 9. Phycobiliproteins K.-H. Zhao, R. J. Porra and H. Scheer; 10. UV-absorbing 'pigments': mycosporine-like amino acids J. I. Carreto, S. Roy, K. Whitehead, C. Llewellyn and M. O. Carignan; Part IV. Selected Pigment Applications in Oceanography: 11. Pigments and photoacclimation processes C. Brunet, G. Johnsen, J. Lavaud and S. Roy; 12. Pigment-based measurements of phytoplankton rates A. Guttierez-Rodriguez and M. Latasa; 13. In vivo bio-optical properties of phytoplankton pigments G. Johnsen, A. Bricaud, N. Nelson, B. B. Pre;zelin and R. R. Bidigare; 14. Optical monitoring of phytoplankton bloom pigment signatures G. Johnsen, M. A. Moline, L. H. Pettersson, J. L. Pinckney, D. V. Pozdnyakov, E. S. Egeland and O. M. Schofield; Appendix: harmful algae toxins and pigments E. S. Egeland; Part V. Future Perspectives: 15. Perspectives on future directions C. Llewellyn, S. Roy, G. Johnsen, E. S. Egeland, M. Chauton, G. Hallegraeff, M. Lohr, U. Oster, R. J. Porra, H. Scheer and K.-H. Zhao; Part VI. Aids for Practical Laboratory Work: Appendix A. Update on filtration, storage and extraction solvents J. L. Pinckney, D. F. Millie and L. Van Heukelem; Appendix B. The pigment analyst's guide to HPLC hardware A. R. Neeley, C. S. Thomas, S. B. Hooker and L. Van Heukelem; Appendix C. Minimum identification criteria for identifying phytoplankton pigments E. S. Egeland; Appendix D. Phytoplankton cultures for standard pigments and their suppliers S. Roy, S. W. Wright and S. W. Jeffrey; Appendix E. Commercial suppliers of phytoplankton pigments E. S. Egeland and L. Schlüter; Part VII: Phytoplankton pigments data sheets E. S. Egeland; Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-904X
    Keywords: brain-derived neurotrophic factor (BDNF) ; metal-catalyzed oxidation (MCO) ; cyanogen bromide (CNBr) ; methionine sulfoxide ; quality control ; protein conformation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Purpose. We examined the metal-catalyzed oxidation of brain-derivedneurotrophic factor (BDNF) using the Cu(II)/ascorbate/O2 modeloxidative system. Methods. Electrospray ionization mass spectrometry, peptide mappingand amino acid analysis were utilized to determine the nature of thecovalent modification induced by the metal-catalyzed oxidative system.Additionally, analytical ultracentrifugation, the Bradford assay, circulardichroism and ANSA dye-binding were used to determine the natureof any conformational changes induced by the oxidation. Results. Exposure of BDNF to the Cu(II)/ascorbate/O2 system led tothe modification of ca. 35% of Met92 to its sulfoxide, and to subsequentconformational changes. The proteolytic digestion procedure wassensitive to this conformational change, and was unable to detect themodification. Chemical digestion with CNBr, however, was not sensitive tothis change, and allowed for the identification of the site ofmodification. Conclusions. The modification of Met92 to its sulfoxide rendered theoxidized BDNF inaccessible to proteolytic digestion, due toconformational changes associated with the oxidation.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Springer
    In:  EPIC3Global Ecology and Oceanography of Harmful Algal Blooms, Global Ecology and Oceanography of Harmful Algal Blooms, Springer, 16 p., pp. 187-203, ISBN: 978-3-319-7006
    Publication Date: 2018-06-23
    Description: Coastal systems partially surrounded by land such as coastal embayments, estuaries and fjords have characteristics that affect the development of harmful algal blooms. Among these, shallow water depths and geophysical constraints from surrounding land masses favour stronger links between the water column and bottom sediments. Typical circulation patterns (e.g., in estuaries) can limit the exchange with offshore waters and favour cell retention. Sub-mesoscale and high-frequency processes are particularly important physical factors that influence pattern and persistence of HABs in coastal systems. Coupling with benthic nutrient fluxes or seed banks from the bottom is enhanced as the degree of physical robustness of coastal systems decreases. The links between bottom cyst distribution patterns and intensity or extension of HABs are still not fully understood. The importance of intra-specific diversity has been highlighted for many HAB species but tools are needed to assist in situ identification of these various life cycle stages. Alternative metabolic strategies, such as mixotrophy or reliance on organic nutrients and allelochemically mediated species interactions, can play a critical role in the development of HA blooms particularly in semi-confined coastal environments. Future work should address the influence of climate change and of coastal aquaculture on blooms of these harmful species in coastal environments.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-05-29
    Description: Harmful algal blooms (HABs) are natural phenomena that result from the interplay of biological, chemical, physical, and sedimentary processes occurring at different temporal and spatial scales. This paper provides an integrated description of HAB dynamics occurring at the mesoscale (10–100 km, sensu Haury et al., 1978) in confined and semi-confined coastal environments and under stratified water column conditions in a diversity of habitats where HAB events occur. It also focuses on relevant aspects occurring at fine-scale and even smaller cellular scales that are critical to species interactions with their environments. Examples include the key role of life-history stages in the recurrence of HABs in certain embayments; the physical-biological interactions driving the formation, maintenance, and decline of thin layers of plankton, including harmful microalgae; the fascinating, but poorly understood, domain of small-scale chemical interactions between HAB species and components of the food web; the potential link between human activities and climate change; and the trends in HAB occurrence. Development of new observing and sampling technologies and of new modeling approaches has resulted in greater understanding of these phenomena. Two Core Research Projects initiated under the GEOHAB Implementation Strategy, “HABs in Fjords and Coastal Embayments” and “HABs in Stratified Systems,” are discussed and priorities for future research toward improving the management and mitigation of HAB impacts are outlined.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-01
    Keywords: 19-Butanoyloxyfucoxanthin; 19-Hexanoyloxyfucoxanthin; Alloxanthin; beta-Carotene, beta,beta-Carotene; Chlorophyll a; Chlorophyll a allomers; Chlorophyll b; Chlorophyll c2; Chlorophyll c3; Chlorophyllide a; Chlorophyllide a, derivative; DATE/TIME; DEPTH, water; Diadinoxanthin; Diatoxanthin; Fucoxanthin; JGOFS; JGOFS methods; Joint Global Ocean Flux Study; Line_P; Lutein; MULT; Multiple investigations; P12; Peridinin; Pheophorbide a2; Pheophorbide a3; Pheophorbide a4; Pheophytin a; Pheophytin b; Pyropheophorbide a; Pyropheophytin a; Sample method; Violaxanthin; Zeaxanthin
    Type: Dataset
    Format: text/tab-separated-values, 162 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-02-01
    Keywords: 19-Butanoyloxyfucoxanthin; 19-Hexanoyloxyfucoxanthin; Alloxanthin; beta-Carotene, beta,beta-Carotene; Chlorophyll a; Chlorophyll a allomers; Chlorophyll b; Chlorophyll c2; Chlorophyll c3; Chlorophyllide a; Chlorophyllide a, derivative; DATE/TIME; DEPTH, water; Diadinoxanthin; Diatoxanthin; Fucoxanthin; JGOFS; JGOFS methods; Joint Global Ocean Flux Study; Line_P; Lutein; MULT; Multiple investigations; P12; Peridinin; Pheophorbide a2; Pheophorbide a3; Pheophorbide a4; Pheophytin a; Pheophytin b; Pyropheophorbide a; Pyropheophytin a; Sample method; Violaxanthin; Zeaxanthin
    Type: Dataset
    Format: text/tab-separated-values, 270 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-02-01
    Keywords: 19-Butanoyloxyfucoxanthin; 19-Hexanoyloxyfucoxanthin; Alloxanthin; beta-Carotene, beta,beta-Carotene; Chlorophyll a; Chlorophyll a allomers; Chlorophyll b; Chlorophyll c2; Chlorophyll c3; Chlorophyllide a; Chlorophyllide a, derivative; DATE/TIME; DEPTH, water; Diadinoxanthin; Diatoxanthin; Fucoxanthin; JGOFS; JGOFS methods; Joint Global Ocean Flux Study; Line_P; Lutein; MULT; Multiple investigations; P12; Peridinin; Pheophorbide a2; Pheophorbide a3; Pheophorbide a4; Pheophytin a; Pheophytin b; Pyropheophorbide a; Pyropheophytin a; Sample method; Violaxanthin; Zeaxanthin
    Type: Dataset
    Format: text/tab-separated-values, 378 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-02-01
    Keywords: 19-Butanoyloxyfucoxanthin; 19-Hexanoyloxyfucoxanthin; Alloxanthin; beta-Carotene, beta,beta-Carotene; Bottle, Niskin; Chlorophyll a; Chlorophyll a allomers; Chlorophyll b; Chlorophyll c2; Chlorophyll c3; Chlorophyllide a; Chlorophyllide a, derivative; DATE/TIME; DEPTH, water; Diadinoxanthin; Diatoxanthin; Fucoxanthin; IOS_92-01; JGOFS; JGOFS methods; John P. Tully; Joint Global Ocean Flux Study; Lutein; NIS; P26; Papa; Peridinin; Pheophorbide a2; Pheophorbide a3; Pheophorbide a4; Pheophytin a; Pheophytin b; Pyropheophorbide a; Pyropheophytin a; Sample method; Violaxanthin; Zeaxanthin
    Type: Dataset
    Format: text/tab-separated-values, 243 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...