GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
  • 1
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The first iron experiments in the Weddell-Scotia Sea5'6 and the Ross Sea7 have shown stimulation of growth by iron; however, other limitations (light and grazing5'6'10'11) were also at play in these near-shore, neritic12 waters where dissolved Fe concentrations4'13'20 commonly exceed ~1 nM, ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: van Hulten, Marco M P; Sterl, Andreas; Middag, Rob; de Baar, Hein J W; Gehlen, Marion; Dutay, Jean-Claude; Tagliabue, Alessandro (2014): On the effects of circulation, sediment resuspension and biological incorporation by diatoms in an ocean model of aluminium. Biogeosciences, 11(14), 3757-3779, https://doi.org/10.5194/bg-11-3757-2014
    Publication Date: 2023-01-13
    Description: The distribution of dissolved aluminium in the West Atlantic Ocean shows a mirror image with that of dissolved silicic acid, hinting at intricate interactions between the ocean cycling of Al and Si. The marine biogeochemistry of Al is of interest because of its potential impact on diatom opal remineralisation, hence Si availability. Furthermore, the dissolved Al concentration at the surface ocean has been used as a tracer for dust input, dust being the most important source of the bio-essential trace element iron to the ocean. Previously, the dissolved concentration of Al was simulated reasonably well with only a dust source, and scavenging by adsorption on settling biogenic debris as the only removal process. Here we explore the impacts of (i) a sediment source of Al in the Northern Hemisphere (especially north of ~ 40° N), (ii) the imposed velocity field, and (iii) biological incorporation of Al on the modelled Al distribution in the ocean. The sediment source clearly improves the model results, and using a different velocity field shows the importance of advection on the simulated Al distribution. Biological incorporation appears to be a potentially important removal process. However, conclusive independent data to constrain the Al / Si incorporation ratio by growing diatoms are missing. Therefore, this study does not provide a definitive answer to the question of the relative importance of Al removal by incorporation compared to removal by adsorptive scavenging.
    Type: Dataset
    Format: application/zip, 2 GBytes
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Klunder, Maarten B; Laan, Patrick; Middag, Rob; de Baar, Hein J W; Bakker, Karel (2012): Dissolved iron in the Arctic Ocean: Important role of hydrothermal sources, shelf input and scavenging removal. Journal of Geophysical Research: Oceans, 117, C04014, https://doi.org/10.1029/2011JC007135
    Publication Date: 2023-02-24
    Description: Concentrations of dissolved (〈0.2 µm) Fe (DFe) in the Arctic shelf seas and in the surface waters of the central Arctic Ocean are presented. In the Barents and Kara seas, near-surface DFe minima indicate depletion of DFe by phytoplankton growth. Below the surface, lower DFe concentrations in the Kara Sea (~0.4-0.6 nM) than in the Barents Sea (~0.6-0.8 nM) likely reflect scavenging removal or biological depletion of DFe. Very high DFe concentrations (〉10 nM) in the bottom waters of the Laptev Sea shelf may be attributed to either sediment resuspension, sinking of brine or regeneration of DFe in the lower layers. A significant correlation (R2 = 0.60) between salinity and DFe is observed. Using d18O, salinity, nutrients and total alkalinity data, the main source for the high (〉2 nM) DFe concentrations in the Amundsen and Makarov Basins is identified as (Eurasian) river water, transported with the Transpolar Drift (TPD). On the North American side of the TPD, the DFe concentrations are low (〈0.8 nM) and variations are determined by the effects of sea-ice meltwater, biological depletion and remineralization and scavenging in halocline waters from the shelf. This distribution pattern of DFe is also supported by the ratio between unfiltered and dissolved Fe (high (〉4) above the shelf and low (〈4) off the shelf).
    Keywords: Arctic Ocean; ARK-XXII/2; CTD/Rosette, ultra clean; CTD-UC; Date/Time of event; DEPTH, water; Elevation of event; Event label; GEOTRACES; Global marine biogeochemical cycles of trace elements and their isotopes; Iron, dissolved; Latitude of event; Longitude of event; Polarstern; PS70/246-1; PS70/255-1; PS70/258-1; PS70/260-2; PS70/261-1; PS70/266-1; PS70/268-1; PS70/285-2; PS70/291-1; PS70/295-1; PS70/299-1; PS70/301-2; PS70/302-1; PS70/306-1; PS70/309-2; PS70/309-4; PS70/310-1; PS70/316-1; PS70/319-1; PS70/326-1; PS70/328-2; PS70/333-1; PS70/338-2; PS70/342-1; PS70/349-1; PS70/352-2; PS70/363-5; PS70/371-2; PS70/372-1; PS70/373-2; PS70/379-1; PS70/382-1; PS70/385-1; PS70/389-1; PS70/400-1; PS70 SPACE DAMOCLES
    Type: Dataset
    Format: text/tab-separated-values, 439 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: van Hulten, Marco M P; Middag, Rob; Dutay, Jean-Claude; de Baar, Hein J W; Roy-Barman, Matthieu; Gehlen, Marion; Tagliabue, Alessandro; Sterl, Andreas (2017): Manganese in the west Atlantic Ocean in the context of the first global ocean circulation model of manganese. Biogeosciences, 14(5), 1123-1152, https://doi.org/10.5194/bg-14-1123-2017
    Publication Date: 2023-02-24
    Description: Dissolved manganese (Mn) is a biologically essential element. Moreover, its oxidised form is involved in removing itself and several other trace elements from ocean waters. Here we report the longest thus far (17500 km length) full-depth ocean section of dissolved Mn in the west Atlantic Ocean, comprising 1320 data values of high accuracy. This is the GA02 transect that is part of the GEOTRACES programme, which aims to understand trace element distributions. The goal of this study is to combine these new observations with new, state-of-the-art, modelling to give a first assessment of the main sources and redistribution of Mn throughout the ocean. To this end, we simulate the distribution of dissolved Mn using a global-scale circulation model. This first model includes simple parameterisations to account for the sources, processes and sinks of Mn in the ocean. Oxidation and (photo)reduction, aggregation and settling, as well as biological uptake and remineralisation by plankton are included in the model. Our model provides, together with the observations, the following insights: – The high surface concentrations of manganese are caused by the combination of photoreduction and sources contributing to the upper ocean. The most important sources are sediments, dust, and, more locally, rivers. – Observations and model simulations suggest that surface Mn in the Atlantic Ocean moves downwards into the southward-flowing North Atlantic Deep Water (NADW), but because of strong removal rates there is no elevated concentration of Mn visible any more in the NADW south of 40° N. – The model predicts lower dissolved Mn in surface waters of the Pacific Ocean than the observed concentrations. The intense oxygen minimum zone (OMZ) in subsurface waters is deemed to be a major source of dissolved Mn also mixing upwards into surface waters, but the OMZ is not well represented by the model. Improved high-resolution simulation of the OMZ may solve this problem. – There is a mainly homogeneous background concentration of dissolved Mn of about 0.10–0.15 nM throughout most of the deep ocean. The model reproduces this by means of a threshold on particulate manganese oxides of 25 pM, suggesting that a minimal concentration of particulate Mn is needed before aggregation and removal become efficient. – The observed distinct hydrothermal signals are produced by assuming both a strong source and a strong removal of Mn near hydrothermal vents.
    Keywords: GEOTRACES; Global marine biogeochemical cycles of trace elements and their isotopes
    Type: Dataset
    Format: application/zip, 393.1 MBytes
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-05-12
    Keywords: Experimental treatment; Nitrate; Time in days
    Type: Dataset
    Format: text/tab-separated-values, 280 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-05-12
    Keywords: Experimental treatment; Phosphate; Time in days
    Type: Dataset
    Format: text/tab-separated-values, 280 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-05-12
    Keywords: Cell density; Experimental treatment; Time in days
    Type: Dataset
    Format: text/tab-separated-values, 431 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Nishioka, Jun; Takeda, Shigenobu; de Baar, Hein J W; Croot, Peter L; Boyé, Marie; Laan, Patrick; Timmermans, Klaas R (2005): Changes in the concentration of iron in different size fractions during an iron enrichment experiment in the open Southern Ocean. Marine Chemistry, 95(1-2), 51-63, https://doi.org/10.1016/j.marchem.2004.06.040
    Publication Date: 2023-05-12
    Description: An in situ iron enrichment experiment was carried out in the Southern Ocean Polar Frontal Zone and fertilized a patch of water within an eddy of the Antarctic Circumpolar Current (EisenEx, Nov. 2000). During the experiment, a physical speciation technique was used for iron analysis in order to understand the changes in iron distribution and size-fractionations, including soluble Fe (〈200 kDa), colloidal Fe (200 kDa-0.2 µm) and labile particle Fe (〉0.2 µm), throughout the development of the phytoplankton bloom. Prior to the first infusion of iron, dissolved (〈0.2 µm) iron concentrations in the ambient surface seawater were extremely low (0.06±0.015 nM) with colloidal iron being a minor fraction. For the iron addition, an acidified FeSO4 solution was released three times over a 23-day period to the eddy. High levels of dissolved iron concentrations (2.0±1.1 nM) were measured in the surface water until 4 days after the first iron infusion. After every iron infusion, when high iron concentrations were observed before storm events, there was a significant correlation between colloidal and dissolved iron concentrations ([Colloidal Fe]=0.7627[Dissolved Fe]+0.0519, R2=0.9346). These results indicate that a roughly constant proportion of colloidal vs. dissolved iron was observed after iron infusion (~76%). Storm events caused a significant decrease in iron concentrations (〈0.61 nM in dissolved iron) and changed the proportions of the three iron size-fractions (soluble, colloidal and labile particle). The changes in each iron size-fraction indicate that colloidal iron was eliminated from surface mixed layer more easily than particulate and soluble fractions. Therefore, particle and soluble iron efficiently remain in the mixed layer, probably due to the presence of suspended particles and naturally dissolved organic ligands. Our data suggest that iron removal through colloidal aggregation during phytoplankton bloom should be considered in the oceanic iron cycle.
    Keywords: A5; Ammonium; ANT-XVIII/2; B3; B4; Bottle number; C3; Colorometric autoanalysis; D3; Date/Time of event; DEPTH, water; E3; EisenEx; Elevation of event; European Iron Enrichment Experiment in the Southern Ocean; Event label; F3; GOFLO; Go-Flo bottles; Iron; Iron, colloidal; Iron, dissolved; Iron, particulate; Iron, soluble; Latitude of event; Longitude of event; Nitrate; Nitrate and Nitrite; Nitrite; Phosphate; Polarstern; PS58/006-4; PS58/007-6; PS58/009-7; PS58/011-7; PS58/012-2; PS58/014-7; PS58/016-2; PS58/020-2; PS58/023-2; PS58/028-2; PS58/031-2; PS58/038-6; PS58/041-3; PS58/045-3; PS58/046-2; PS58/048-2; PS58/049-4; PS58/054-2; PS58/055-2; PS58/061-2; PS58/079-1; PS58/081-2; PS58/083-2; PS58/085-2; PS58/086-2; PS58/088-8; PS58/091-2; PS58/092-2; PS58/100-2; PS58/103-2; PS58/106-4; PS58/107-8; PS58/108-2; PS58 EISENEX; see further details; Silicate; South Atlantic; Spectrophotometry
    Type: Dataset
    Format: text/tab-separated-values, 1891 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Boyé, Marie; Nishioka, Jun; Croot, Peter L; Laan, Patrick; Timmermans, Klaas R; de Baar, Hein J W (2005): Major deviations of iron complexation during 22 days of a mesoscale iron enrichment in the open Southern Ocean. Marine Chemistry, 96(3-4), 257-271, https://doi.org/10.1016/j.marchem.2005.02.002
    Publication Date: 2023-05-12
    Description: The speciation of strongly chelated iron during the 22-day course of an iron enrichment experiment in the Atlantic sector of the Southern Ocean deviates strongly from ambient natural waters. Three iron additions (ferrous sulfate solution) were conducted, resulting in elevated dissolved iron concentrations (Nishioka, J., Takeda, S., de Baar, H.J.W., Croot, P.L., Boye, M., Laan, P., Timmermans, K.R., 2005, Changes in the concentration of iron in different size fractions during an iron enrichment experiment in the open Southern Ocean. Marine Chemistry, doi:10.1016/j.marchem.2004.06.040) and significant Fe(II) levels (Croot, P.L., Laan, P., Nishioka, J., Strass, V., Cisewski, B., Boye, M., Timmermans, K.R., Bellerby, R.G., Goldson, L., Nightingale, P., de Baar, H.J.W., 2005, Spatial and Temporal distribution of Fe(II) and H2O2 during EisenEx, an open ocean mescoscale iron enrichment. Marine Chemistry, doi:10.1016/j.marchem.2004.06.041). Repeated vertical profiles for dissolved (filtrate 〈 0.2 µm) Fe(III)-binding ligands indicated a production of chelators in the upper water column induced by iron fertilizations. Abiotic processes (chemical reactions) and an inductive biologically mediated mechanism were the likely sources of the dissolved ligands which existed either as inorganic amorphous phases and/or as strong organic chelators. Discrete analysis on ultra-filtered samples (〈 200 kDa) suggested that the produced ligands would be principally colloidal in size (〉 200 kDa-〈 0.2 µm), as opposed to the soluble fraction (〈 200 kDa) which dominated prior to the iron infusions. Yet these colloidal ligands would exist in a more transient nature than soluble ligands which may have a longer residence time. The production of dissolved Fe-chelators was generally smaller than the overall increase in dissolved iron in the surface infused mixed layer, leaving a fraction (about 13-40%) of dissolved Fe not bound by these dissolved Fe-chelators. It is suggested that this fraction would be inorganic colloids. The unexpected persistence of such high inorganic colloids concentrations above inorganic Fe-solubility limits illustrates the peculiar features of the chemical iron cycling in these waters. Obviously, the artificial about hundred-fold increase of overall Fe levels by addition of dissolved inorganic Fe(II) ions yields a major disruption of the natural physical-chemical abundances and reactivity of Fe in seawater. Hence the ensuing responses of the plankton ecosystem, while in itself significant, are not necessarily representative for a natural enrichment, for example by dry or wet deposition of aeolian dust. Ultimately, the temporal changes of the Fe(III)-binding ligand and iron concentrations were dominated by the mixing events that occurred during EISENEX, with storms leading to more than an order of magnitude dilution of the dissolved ligands and iron concentrations. This had strongest impact on the colloidal size class (〉 200 kDa-〈 0.2 µm) where a dramatic decrease of both the colloidal ligand and the colloidal iron levels (Nishioka, J., Takeda, S., de Baar, H.J.W., Croot, P.L., Boye, M., Laan, P., Timmermans, K.R., 2005, Changes in the concentration of iron in different size fractions during an iron enrichment experiment in the open Southern Ocean. Marine Chemistry, doi:10.1016/j.marchem.2004.06.040) was observed.
    Keywords: ANT-XVIII/2; Date/Time of event; DEPTH, water; EisenEx; Elevation of event; European Iron Enrichment Experiment in the Southern Ocean; Event label; GOFLO; Go-Flo bottles; Iron, colloidal; Iron, dissolved; Iron, dissolved, conditional complex stability; Iron, dissolved, inorganic; Iron, dissolved organic/dissolved inorganic ratio; Iron, soluble; Iron, soluble, conditional complex stability; Iron-binding ligand, dissolved; Latitude of event; Longitude of event; Polarstern; PS58/007-6; PS58/009-7; PS58/011-7; PS58/014-7; PS58/038-6; PS58/041-3; PS58/045-3; PS58/046-2; PS58/048-2; PS58/049-4; PS58/061-2; PS58/088-8; PS58/091-2; PS58/092-2; PS58/107-8; PS58 EISENEX; South Atlantic
    Type: Dataset
    Format: text/tab-separated-values, 477 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-06-10
    Keywords: 06AQ19951206-track; ANT-XIII/2; CT; DATE/TIME; Depth, bathymetric, interpolated/gridded; DEPTH, water; extracted from the 2-Minute Gridded Global Relief Data (ETOPO2); extracted from the NCEP/NCAR 40-Year Reanalysis Project; extracted from the World Ocean Atlas 2005; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); LATITUDE; LONGITUDE; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Polarstern; Pressure, atmospheric; Pressure, atmospheric, interpolated; PS38; Recomputed after SOCAT (Pfeil et al., 2013); Salinity; Salinity, interpolated; SOCAT; Surface Ocean CO2 Atlas Project; Temperature, water; Temperature at equilibration; Underway cruise track measurements
    Type: Dataset
    Format: text/tab-separated-values, 410352 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...