GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-02-06
    Description: This paper introduces the Distribution-Independent Storm Severity Index (DI-SSI). The DI-SSI represents an approach to quantify the severity of exceptional surface wind speeds of large scale windstorms that is complementary to the SSI introduced by Leckebusch et al. While the SSI approaches the extremeness of a storm from a meteorological and potential loss (impact) perspective, the DI-SSI defines the severity in a more climatological perspective. The idea is to assign equal index values to wind speeds of the same singularity (e.g. the 99th percentile) under consideration of the shape of the tail of the local wind speed climatology. Especially in regions at the edge of the classical storm track, the DI-SSI shows more equitable severity estimates, e.g. for the extra-tropical cyclone Klaus. In order to compare the indices, their relation with the North Atlantic Oscillation is studied, which is one of the main large scale drivers for the intensity of European windstorms.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Meteorological Society
    In:  Journal of Hydrometeorology, 16 (1). pp. 465-472.
    Publication Date: 2020-07-23
    Description: The Water and Global Change (WATCH) forcing datasets have been created to support the use of hydrological and land surface models for the assessment of the water cycle within climate change studies. They are based on 40-yr ECMWF Re-Analysis (ERA-40) or ECMWF interim reanalysis (ERA-Interim) with temperatures (among other variables) adjusted such that their monthly means match the monthly temperature dataset from the Climatic Research Unit. To this end, daily minimum, maximum, and mean temperatures within one calendar month have been subjected to a correction involving monthly means of the respective month. As these corrections can be largely different for adjacent months, this procedure potentially leads to implausible differences in daily temperatures across the boundaries of calendar months. We analyze day-to-day temperature fluctuations within and across months and find that across-months differences are significantly larger, mostly in the tropics and frigid zones. Average across-months differences in daily mean temperature are typically between 10% and 40% larger than their corresponding within-months average temperature differences. However, regions with differences up to 200% can be found in tropical Africa. Particularly in regions where snowmelt is a relevant player for hydrology, a few degrees Celsius difference can be decisive for triggering this process. Daily maximum and minimum temperatures are affected in the same regions, but in a less severe way.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-04-28
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-04-28
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Taylor & Francis
    In:  Tellus A: Dynamic meteorology and oceanography, 66 . p. 22830.
    Publication Date: 2015-11-25
    Description: Mid-latitudinal cyclones are a key factor for understanding regional anomalies in primary meteorological parameters such as temperature or precipitation. Extreme cyclones can produce notable impacts on human society and economy, for example, by causing enormous economic losses through wind damage. Based on 41 annually initialised (1961–2001) hindcast ensembles, this study evaluates the ability of a single-model decadal forecast system (MPI-ESM-LR) to provide skilful probabilistic three-category forecasts (enhanced, normal or decreased) of winter (ONDJFM) extra-tropical cyclone frequency over the Northern Hemisphere with lead times from 1 yr up to a decade. It is shown that these predictions exhibit some significant skill, mainly for lead times of 2–5 yr, especially over the North Atlantic and Pacific. Skill for intense cyclones is generally higher than for all detected systems. A comparison of decadal hindcasts from two different initialisation techniques indicates that initialising from reanalysis fields yields slightly better results for the first forecast winter (month 10–15), while initialisation based on an assimilation experiment provides better skill for lead times between 2 and 5 yr. The reasons and mechanisms behind this predictive skill are subject to future work. Preliminary analyses suggest a strong relationship of the model’s skill over the North Atlantic with the ability to predict upper ocean temperatures modulating lower troposphere baroclinicity for the respective area and time scales.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Copernicus Publications
    In:  Natural Hazards and Earth System Sciences, 16 . pp. 2391-2402.
    Publication Date: 2019-02-01
    Description: This paper describes an approach to derive probabilistic predictions of local winter storm damage occurrences from a global medium-range ensemble prediction system (EPS). Predictions of storm damage occurrences are subject to large uncertainty due to meteorological forecast uncertainty (typically addressed by means of ensemble predictions) and uncertainties in modelling weather impacts. The latter uncertainty arises from the fact that local vulnerabilities are not known in sufficient detail to allow for a deterministic prediction of damages, even if the forecasted gust wind speed contains no uncertainty. Thus, to estimate the damage model uncertainty, a statistical model based on logistic regression analysis is employed, relating meteorological analyses to historical damage records. A quantification of the two individual contributions (meteorological and damage model uncertainty) to the total forecast uncertainty is achieved by neglecting individual uncertainty sources and analysing resulting predictions. Results show an increase in forecast skill measured by means of a reduced Brier score if both meteorological and damage model uncertainties are taken into account. It is demonstrated that skilful predictions on district level (dividing the area of Germany into 439 administrative districts) are possible on lead times of several days. Skill is increased through the application of a proper ensemble calibration method, extending the range of lead times for which skilful damage predictions can be made.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-06-25
    Description: In Central Europe, river flooding has been recently recognized as a major hazard, in particular after the 1997 Odra /Oder flood, the 2001 Vistula flood, and the most destructive 2002 deluge on the Labe/Elbe. Major recent floods in central Europe are put in perspective and their common elements are identified. Having observed that flood risk and vulnerability are likely to have grown in many areas, one is curious to understand the reasons for growth. These can be sought in socio-economic domain (humans encroaching into floodplain areas), terrestrial systems (land-cover changes – urbanization, deforestation, reduction of wetlands, river regulation), and climate system. The atmospheric capacity to absorb moisture, its potential water content, and thus potential for intense precipitation, are likely to increase in a warmer climate. The changes in intense precipitation and high flows are examined, based on observations and projections. Study of projected changes in intense precipitation, using climate models, for several areas of central Europe, and in particular, for drainage basins of the upper Labe/Elbe, Odra/Oder, and Vistula is reported. Significant changes have been identified between future projections and the reference period, of relevance to flood hazard in areas, which have experienced severe recent floodings
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-04-28
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-02-01
    Description: A German national project coordinates research on improving a global decadal climate prediction system for future operational use. MiKlip, an eight-year German national research project on decadal climate prediction, is organized around a global prediction system comprising the climate model MPI-ESM together with an initialization procedure and a model evaluation system. This paper summarizes the lessons learned from MiKlip so far; some are purely scientific, others concern strategies and structures of research that targets future operational use. Three prediction-system generations have been constructed, characterized by alternative initialization strategies; the later generations show a marked improvement in hindcast skill for surface temperature. Hindcast skill is also identified for multi-year-mean European summer surface temperatures, extra-tropical cyclone tracks, the Quasi-Biennial Oscillation, and ocean carbon uptake, among others. Regionalization maintains or slightly enhances the skill in European surface temperature inherited from the global model and also displays hindcast skill for wind-energy output. A new volcano code package permits rapid modification of the predictions in response to a future eruption. MiKlip has demonstrated the efficacy of subjecting a single global prediction system to a major research effort. The benefits of this strategy include the rapid cycling through the prediction-system generations, the development of a sophisticated evaluation package usable by all MiKlip researchers, and regional applications of the global predictions. Open research questions include the optimal balance between model resolution and ensemble size, the appropriate method for constructing a prediction ensemble, and the decision between full-field and anomaly initialization. Operational use of the MiKlip system is targeted for the end of the current decade, with a recommended generational cycle of two to three years.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-02-01
    Description: NOAA 20th century and ERA-20C reanalysis datasets are evaluated regarding the representation of extra-tropical cyclones and windstorms over the Northern and Southern Hemisphere during the respective 6-month winter seasons. The results indicate substantial differences in low-frequency variability between the two datasets – especially in the first half of the 20th century – expressed in different signs and/or magnitudes of long-term trends. This is hampering a reliable analysis of real long-term trends of cyclone and windstorm activity. However, higher-frequency variability is in good agreement between both datasets especially for the Northern Hemisphere.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...