GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Nature Research
    In:  Nature Communications, 8 (1). Art.Nr. 1015.
    Publication Date: 2020-02-06
    Description: Changes in tropical zonal atmospheric (Walker) circulation induce shifts in rainfall patterns along with devastating floods and severe droughts that dramatically impact the lives of millions of people. Historical records and observations of the Walker circulation over the 20th century disagree on the sign of change and therefore, longer climate records are necessary to better project tropical circulation changes in response to global warming. Here we examine proxies for thermocline depth and rainfall in the eastern tropical Indian Ocean during the globally colder Last Glacial Maximum (19–23 thousand years ago) and for the past 3000 years. We show that increased thermocline depth and rainfall indicate a stronger-than-today Walker circulation during the Last Glacial Maximum, which is supported by an ensemble of climate simulations. Our findings underscore the sensitivity of tropical circulation to temperature change and provide evidence for a further weakening of the Walker circulation in response to greenhouse warming.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-02-08
    Description: Surface and thermocline conditions of the Western Pacific Warm Pool (WPWP) reflect changes in regional and basin scale ocean and atmosphere circulations and in turn may affect climate globally. Previous studies suggest that a range of factors influences the WPWP on different timescales, however the precise forcings and mechanisms are unclear. Combining surface and thermocline records from sediment cores offshore Papua New Guinea we explore the influence of local and remote processes on the WPWP in response to astronomical forcing and changing glacial-interglacial boundary conditions over the past 110 kyr. We find that thermocline temperatures change with variations in Earth's obliquity with higher temperatures coinciding with high obliquity, which is attributed to variations in subduction and advection of the South Pacific Tropical Water. In contrast, rainfall variations associated with meridional migrations of the Intertropical Convergence Zone are primarily driven by changes in insolation due to precession. Records of bulk sedimentary Ti/Ca and foraminiferal Nd/Ca indicate an additional influence of obliquity, which, however, cannot unambiguously be related to changes in precipitation. Finally, our results suggest a thermocline deepening during the Last Glacial Maximum (LGM). A compilation of available proxy records illustrates a dipole-like pattern of LGM thermocline depth anomalies with a shoaling (deepening) in the northern (southern) WPWP. A comparison of the proxy compilation with an ensemble of Paleoclimate Model Intercomparison Project (PMIP) climate model simulations reveals that the spatial pattern of LGM thermocline depth anomalies is mainly attributable to a contraction of the Pacific Walker circulation on its western side.
    Type: Article , PeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  [Talk] In: Forams 2010 - International Symposium on Foraminifera 2010, 05.09.-10.09.2010, Bonn . FORAMS 2010 - International Symposium on Foraminifera : Abstracts Volume with Program .
    Publication Date: 2012-02-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-09-23
    Description: Quantifying the spatial and temporal sea surface temperature (SST) and salinity changes of the Indo-Pacific Warm Pool is essential to understand the role of this region in connection with abrupt climate changes particularly during the last deglaciation. In this study we reconstruct SST and seawater δ18O of the tropical eastern Indian Ocean for the past 40,000 years from two sediment cores (GeoB 10029-4, 1°30′S, 100°08′E, and GeoB 10038-4, 5°56′S, 103°15′E) retrieved offshore Sumatra. Our results show that annual mean SSTs increased about 2–3 °C at 19,000 years ago and exhibited southern hemisphere-like timing and pattern during the last deglaciation. Our SST records together with other Mg/Ca-based SST reconstructions around Indonesia do not track the monsoon variation since the last glacial period, as recorded by terrestrial monsoon archives. However, the spatial SST heterogeneity might be a result of changing monsoon intensity that shifts either the annual mean SSTs or the seasonality of G. ruber towards the warmer or the cooler season at different locations. Seawater δ18O reconstructions north of the equator suggest fresher surface conditions during the last glacial and track the northern high-latitude climate change during the last deglaciation. In contrast, seawater δ18O records south of the equator do not show a significant difference between the last glacial period and the Holocene, and lack Bølling Allerød and Younger Dryas periods suggestive of additional controls on annual mean surface hydrology in this part of the Indo-Pacific Warm Pool.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-06-21
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-09-23
    Description: Mg/Ca ratios of surface and subsurface dwelling foraminifera provide valuable information about the past temperature of the water column. Planktonic foraminifera calcify over a period of weeks to months. Therefore, the range of Mg/Ca temperatures obtained from single specimens potentially records seasonal temperature changes. We present solution-derived Mg/Ca ratios for single specimens of the planktonic foraminifera species Globigerinoides ruber (pink), Globigerinoides ruber (white), and Globorotalia inflata from a sediment trap off northwest Africa (20°45.6′N, 18°41.9′W). Cleaning of single specimens was achieved using a flow-through system in order to prevent sample loss. Mg/Ca ratios of surface dwelling G. ruber (pink) show strong seasonality linked to sea surface temperature. Mg/Ca ratios of G. ruber (white) do not show such seasonality. Subsurface dwelling G. inflata flux is largest during the main upwelling season, but Mg/Ca ratios reflect annual temperatures at intermediate water depths. The sediment trap time series suggests that changes in the range of Mg/Ca ratios exhibited by single specimens of G. ruber (pink) and G. inflata from the sedimentary record should provide information on the past temperature range under which these species calcified. Statistical analysis suggests detectable changes in the Mg/Ca range are ≥0.80 mmol/mol (G. ruber (pink)) and ≥0.34 mmol/mol (G. inflata). For G. ruber (pink), such changes would indicate changes in the seasonal sea surface temperature range 〉4°C or a shift in the main calcification and reproductive period. For G. inflata, such changes would indicate 〉1.7°C changes in the thermocline temperature or a change in the depth habitat.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-11-14
    Description: The Indo-Pacific Warm Pool (IPWP) exerts a dominant role in global climate by releasing huge amounts of water vapour and latent heat to the atmosphere and modulating upper ocean heat content (OHC), which has been implicated in modern climate change1. The long-term variations of IPWP OHC and their effect on monsoonal hydroclimate are, however, not fully explored. Here, by combining geochemical proxies and transient climate simulations, we show that changes of IPWP upper (0–200 m) OHC over the past 360,000 years exhibit dominant precession and weaker obliquity cycles and follow changes in meridional insolation gradients, and that only 30%–40% of the deglacial increases are related to changes in ice volume. On the precessional band, higher upper OHC correlates with oxygen isotope enrichments in IPWP surface water and concomitant depletion in East Asian precipitation as recorded in Chinese speleothems. Using an isotope-enabled air–sea coupled model, we suggest that on precessional timescales, variations in IPWP upper OHC, more than surface temperature, act to amplify the ocean–continent hydrological cycle via the convergence of moisture and latent heat. From an energetic viewpoint, the coupling of upper OHC and monsoon variations, both coordinated by insolation changes on orbital timescales, is critical for regulating the global hydroclimate.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-02-07
    Description: We present a global atlas of downcore foraminiferal oxygen and carbon isotope ratios available at https://doi.org/10.1594/PANGAEA.936747 (Mulitza et al., 2021a). The database contains 2106 published and previously unpublished stable isotope downcore records with 361 949 stable isotope values of various planktic and benthic species of Foraminifera from 1265 sediment cores. Age constraints are provided by 6153 uncalibrated radiocarbon ages from 598 (47 %) of the cores. Each stable isotope and radiocarbon series is provided in a separate netCDF file containing fundamental metadata as attributes. The data set can be managed and explored with the free software tool PaleoDataView. The atlas will provide important data for paleoceanographic analyses and compilations, site surveys, or for teaching marine stratigraphy. The database can be updated with new records as they are generated, providing a live ongoing resource into the future.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-02-07
    Description: In this study, we used stable isotopes of oxygen (δ18O), deuterium (δD), and dissolved inorganic carbon (δ13CDIC) in combination with temperature, salinity, oxygen and nutrient concentrations to characterize the coastal (71-78 °W) and an oceanic (82-98 °W) water masses (SAAW-Subantarctic Surface Water; STW-Subtropical Water; ESSW-Equatorial Subsurface water; AAIW-Antarctic Intermediate Water; PDW-Pacific Deep Water) of the Southeast Pacific (SEP). The results show that δ18O and δD can be used to differentiate between SAAW-STW, SAAW-ESSW and ESSW-AAIW. δ13CDIC signatures can be used to differentiate between STW-ESSW (oceanic section), SAAW-ESSW, ESSW-AAIW and AAIW-PDW. Compared with the oceanic section, our new coastal section highlights differences in both the chemistry and geometry of water masses above 1000 m. Previous paleoceanographic studies using marine sediments from the SEP continental margin used the present-day hydrological oceanic transect to compare against, as the coastal section was not sufficiently characterized. We suggest that our new results of the coastal section should be used for past characterizations of the SEP water masses that are usually based on continental margin sediment samples.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-03-22
    Description: Paleoceanographic reconstructions show that the strength of North Atlantic currents decreased during the Little Ice Age. In contrast, the role of ocean circulation in climate regulation during earlier historical epochs of the Common Era (C.E.) remains unclear. Here, we reconstruct sea surface temperature (SST) and salinity in the Caribbean Basin for the past 1700 years using the isotopic and elemental composition of planktic foraminifera tests. Centennial-scale SST and salinity variations in the Caribbean co-occur with (hydro)climate changes in the Northern Hemisphere and are linked to a North Atlantic SST forcing. Cold phases around 600, 800, and 1400 to 1600 C.E. are characterized by Caribbean salinification and Gulf of Mexico freshening that implies reductions in the strength of North Atlantic surface circulation. We suggest that the associated changes in the meridional salt advection contributed to the historical climate variability of the C.E.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...