GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-03-30
    Description: Anthropogenic atmospheric loading of CO2 raises concerns about combined effects of increasing ocean temperature and acidification, on biological processes. In particular, the response of appendicularian zooplankton to climate change may have significant ecosystem implications as they can alter biogeochemical cycling compared to classical copepod dominated food webs. However, the response of appendicularians to multiple climate drivers and effect on carbon cycling are still not well understood. Here, we investigated how gelatinous zooplankton (appendicularians) affect carbon cycling of marine food webs under conditions predicted by future climate scenarios. Appendicularians performed well in warmer conditions and benefited from low pH levels, which in turn altered the direction of carbon flow. Increased appendicularians removed particles from the water column that might otherwise nourish copepods by increasing carbon transport to depth from continuous discarding of filtration houses and fecal pellets. This helps to remove CO2 from the atmosphere, and may also have fisheries implications.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-02-06
    Description: Simultaneous analysis of carbon, nitrogen and sulphur stable isotope ratios was applied in this pilot study to examine the food web of a Zostera marina L. system in the western Baltic Sea. Samples of three potential food sources: eelgrass, epiphytic algae and seston, as well as 69 consumer species were collected during the growing season of Z. marina from March to September 2011. The measured δ13C values of epiphytes (-14.1‰ ± 1.8 SD) were close to δ13C values of eelgrass (-11.6‰ ± 1.8 SD), impeding a clear distinction of those two carbon sources, whereas seston δ13C values (-20.9‰ ± 3.5 SD) were clearly different. This frequently encountered problem was solved by the additional use of δ34S, which resulted in easily distinguishable values for sediment and seawater derived sulphur. Values of primary producer δ34S ranged from 5.6‰ (± 2.3 SD) for Z. marina leaves to 14.2‰ (± 1.6 SD) for epiphytes and 11.9‰ (± 3.3 SD) for seston. The combination of δ34S and δ13C values made a separation of carbon sources possible and enabled the allocation of potential food sources to consumers and a description of their trophic relationships. The data of stable isotope ratio analysis of this eelgrass community strongly indicate a food web based on epiphyte and seston production. δ15N values show a food web consisting of large numbers of generalists and a high degree of omnivory amongst the consumer species analysed. This implies an occupation of every trophic position possible, which is supported by a continuous distribution of δ15N values. Previously described eelgrass food webs may have to be re-evaluated to include sulfur in order to provide a clear picture on primary carbon sources.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-09-23
    Description: The Eastern Tropical North Atlantic (ETNA) is characterised by a strong east to west gradient in the vertical upward flux of dissolved inorganic nitrogen to the photic zone. We measured the stable nitrogen isotope (δ15N) signatures of various zooplankton taxa covering twelve stations in the ETNA (04°–14°N, 016–030°W) in fall 2009, and observed significant differences in δ15N values among stations. These spatial differences in δ15N within zooplankton taxa exceeded those between trophic levels and revealed an increasing atmospheric input of nitrogen by N2 fixation and Aeolian dust in the open ocean as opposed to remineralised NO3− close to the NW African upwelling. In order to investigate the spatial distribution of upwelling-fuelled versus atmospheric-derived nitrogen more closely, we examined the δ15N signatures in size-fractionated zooplankton as well as in three widely distributed epipelagic copepod species on a second cruise in fall 2010 in the ETNA (02-17°35′N, 015–028°W). Copepods were sampled for δ15N and RNA/DNA as a proxy for nutritional condition on 25 stations. At the same stations, vertical profiles of chlorophyll-a and dissolved nutrients were obtained. High standing stocks of chl-a were associated with shallow mixed layer depth and thickening of the nutricline. As the nitracline was generally deeper and less thick than the phosphacline, it appears that non-diazotroph primary production was limited by N rather than P throughout the study area, which is in line with enrichment experiments during these cruises. Estimated by the δ15N in zooplankton, atmospheric sources of new N contributed less than 20% close to the African coast and in the Guinea Dome area and up to 60% at the offshore stations, depending on the depth of the nitracline. δ15N of the three different copepod species investigated strongly correlated with each other, in spite of their distinct feeding ecology, which resulted in different spatial patterns of nutritional condition as indicated by RNA/DNA. Highlights: ► We studied δ15N and RNA/DNA of eastern tropical Atlantic zooplankton along with nutrients and Chl-α. ► Zooplankton −δ15N was decreasing from east (West African Shelf) to west (oligotrophic open ocean). ► Total integrated Chl-a depended mainly on nutricline depth and was N-limited throughout the area. ► Zooplankton δ15N and nutricline depth were used to estimate atmospheric N sources to the food web. ► Estimated atmospheric nitrogen sources were less than 20% at the shelf slope and up to 60% offshore.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-05-23
    Description: Total dissolved inorganic carbon (CT) is one of the most frequently measured parameters used to calculate the partial pressure of carbon dioxide in seawater. Its determination has become increasingly important because of the rising interest in the biological effects of ocean acidification. Coulometric and infrared detection methods are currently favored in order to precisely quantify CT. These methods however are not sufficiently validated for CT measurements of biological experiments manipulating seawater carbonate chemistry with an extended CT measurement range (~1250–2400 μmol kg–1) compared to natural open ocean seawater (~1950–2200 μmol kg−1). The requirement of total sample amounts between 0.1–1 L seawater in the coulometric- and infrared detection methods potentially exclude their use for experiments working with much smaller volumes. Additionally, precise CT analytics become difficult with high amounts of biomass (e.g., phytoplankton cultures) or even impossible in the presence of planktonic calcifiers without sample pre-filtration. Filtration however, can alter CT concentration through gas exchange induced by high pressure. Addressing these problems, we present precise quantification of CT using a small, basic and inexpensive gas chromatograph as a CT analyzer. Our technique is able to provide a repeatability of ±3.1 μmol kg−1, given by the pooled standard deviation over a CT range typically applied in acidification experiments. 200 μL of sample is required to perform the actual CT measurement. The total sample amount needed is 12 mL. Moreover, we show that sample filtration is applicable with only minor alteration of the CT. The method is simple, reliable and with low cumulative material costs. Hence, it is potentially attractive for all researchers experimentally manipulating the seawater carbonate system.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-02-01
    Description: Highlights: • The natural ecohydrographic gradient of the Red Sea translates into an isoscape. • The Red Sea isoscape features increasing zooplankton δ15 N values towards the South. • Isotopic baseline variations propagate through the pelagic food web. • Eddy-induced upwelling modifies the natural ecohydrographic North-South gradient. Abstract: Although zooplankton occupy key roles in aquatic biogeochemical cycles, little is known about the pelagic food web and trophodynamics of zooplankton in the Red Sea. Natural abundance stable isotope analysis (SIA) of carbon (δ13C) and N (δ15N) is one approach to elucidating pelagic food web structures and diet assimilation. Integrating the combined effects of ecological processes and hydrography, ecohydrographic features often translate into geographic patterns in δ13C and δ15N values at the base of food webs. This is due, for example, to divergent 15N abundances in source end-members (deep water sources: high δ15N, diazotrophs: low δ15N). Such patterns in the spatial distributions of stable isotope values were coined isoscapes. Empirical data of atmospheric, oceanographic, and biological processes, which drive the ecohydrographic gradients of the oligotrophic Red Sea, are under-explored and some rather anticipated than proven. Specifically, five processes underpin Red Sea gradients: (a) monsoon-related intrusions of nutrient-rich Indian Ocean water; (b) basin scale thermohaline circulation; (c) mesoscale eddy activity that causes up-welling of deep water nutrients into the upper layer; (d) the biological fixation of atmospheric nitrogen (N2) by diazotrophs; and (e) the deposition of dust and aerosol-derived N. This study assessed relationships between environmental samples (nutrients, chlorophyll a), oceanographic data (temperature, salinity, current velocity [ADCP]), particulate organic matter (POM), and net-phytoplankton, with the δ13C and δ15N values of zooplankton collected in spring 2012 from 16°28′ to 26°57′N along the central axis of the Red Sea. The δ15N of bulk POM and most zooplankton taxa increased from North (Duba) to South (Farasan). The potential contribution of deep water nutrient-fueled phytoplankton, POM, and diazotrophs varied among sites. Estimates suggested higher diazotroph contributions in the North, a greater contribution of POM in the South, and of small phytoplankton in the central Red Sea. Consistent variation across taxonomic and trophic groups at latitudinal scale, corresponding with patterns of nutrient stoichiometry and phytoplankton composition, indicates that the zooplankton ecology in the Red Sea is largely influenced by hydrographic features. It suggests that the primary ecohydrography of the Red Sea is driven not only by the thermohaline circulation, but also by mesoscale activities that transports nutrients to the upper water layers and interact with the general circulation pattern. Ecohydrographic features of the Red Sea, therefore, aid in explaining the observed configuration of its isoscape at the macroecological scale.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-02-01
    Description: Concerns about increasing atmospheric CO2 concentrations and global warming have initiated studies on the consequences of multiple-stressor interactions on marine organisms and ecosystems. We present a fully-crossed factorial mesocosm study and assess how warming and acidification affect the abundance, body size, and fatty acid composition of copepods as a measure of nutritional quality. The experimental set-up allowed us to determine whether the effects of warming and acidification act additively, synergistically, or antagonistically on the abundance, body size, and fatty acid content of copepods, a major group of lower level consumers in marine food webs. Copepodite (developmental stages 1–5) and nauplii abundance were antagonistically affected by warming and acidification. Higher temperature decreased copepodite and nauplii abundance, while acidification partially compensated for the temperature effect. The abundance of adult copepods was negatively affected by warming. The prosome length of copepods was significantly reduced by warming, and the interaction of warming and CO2 antagonistically affected prosome length. Fatty acid composition was also significantly affected by warming. The content of saturated fatty acids increased, and the ratios of the polyunsaturated essential fatty acids docosahexaenoic- (DHA) and arachidonic acid (ARA) to total fatty acid content increased with higher temperatures. Additionally, here was a significant additive interaction effect of both parameters on arachidonic acid. Our results indicate that in a future ocean scenario, acidification might partially counteract some observed effects of increased temperature on zooplankton, while adding to others. These may be results of a fertilizing effect on phytoplankton as a copepod food source. In summary, copepod populations will be more strongly affected by warming rather than by acidifying oceans, but ocean acidification effects can modify some temperature impacts
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-02-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-02-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-02-22
    Description: The differences in the impact of two major groups of herbivorous zooplankton (Cladocera and Copepoda) on summer phytoplankton in a mesotrophic lake were studied. Field experiments were performed in which phytoplankton were exposed to different densities of two major types of herbivorous zooplankton, cladocerans and copepods. Contrary to expectation, neither of the two zooplankton groups significantly reduced phytoplankton biomass. However, there were strong and contrasting impacts on phytoplankton size structure and on individual taxa. Cladocerans suppressed small phytoplankton, while copepods suppressed large phytoplankton. The unaffected size classes compensated for the loss of those affected by enhanced growth. After contamination of the copepod mesocosms with the cladoceran Daphnia, the combined impact of both zooplankton groups caused a decline in total phytoplankton biomass.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...