GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-08-01
    Description: A compilation of more than 30 studies shows that adult Antarctic krill (Euphausia superba) may frequent benthic habitats year-round, in shelf as well as oceanic waters and throughout their circumpolar range. Net and acoustic data from the Scotia Sea show that in summer 2-20 of the population reside at depths between 200 and 2000 m, and; that large aggregations can form above the seabed. Local differences in the vertical distribution of krill indicate that reduced feeding success in surface waters, either due to predator encounter or food shortage, might initiate such deep migrations and results in benthic feeding. Fatty acid and microscopic analyses of stomach content confirm two different foraging habitats for Antarctic krill: the upper ocean, where fresh phytoplankton is the main food source, and deeper water or the seabed, where detritus and copepods are consumed. Krill caught in upper waters retain signals of benthic feeding, suggesting frequent and dynamic exchange between surface and seabed. Krill contained up to 260 nmol iron per stomach when returning from seabed feeding. About 5 of this iron is labile, i.e., potentially available to phytoplankton. Due to their large biomass, frequent benthic feeding, and acidic digestion of particulate iron, krill might facilitate an input of new iron to Southern Ocean surface waters. Deep migrations and foraging at the seabed are significant parts of krill ecology, and the vertical fluxes involved in this behavior are important for the coupling of benthic and pelagic food webs and their elemental repositories. © 2011, by the American Society of Limnology and Oceanography, Inc.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Royal Society of London
    In:  Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 372 (2019). p. 20130047.
    Publication Date: 2020-06-12
    Description: The Antarctic continental shelves and slopes occupy relatively small areas, but, nevertheless, are important for global climate, biogeochemical cycling and ecosystem functioning. Processes of water mass transformation through sea ice formation/melting and ocean–atmosphere interaction are key to the formation of deep and bottom waters as well as determining the heat flux beneath ice shelves. Climate models, however, struggle to capture these physical processes and are unable to reproduce water mass properties of the region. Dynamics at the continental slope are key for correctly modelling climate, yet their small spatial scale presents challenges both for ocean modelling and for observational studies. Cross-slope exchange processes are also vital for the flux of nutrients such as iron from the continental shelf into the mixed layer of the Southern Ocean. An iron-cycling model embedded in an eddy-permitting ocean model reveals the importance of sedimentary iron in fertilizing parts of the Southern Ocean. Ocean gliders play a key role in improving our ability to observe and understand these small-scale processes at the continental shelf break. The Gliders: Excellent New Tools for Observing the Ocean (GENTOO) project deployed three Seagliders for up to two months in early 2012 to sample the water to the east of the Antarctic Peninsula in unprecedented temporal and spatial detail. The glider data resolve small-scale exchange processes across the shelf-break front (the Antarctic Slope Front) and the front's biogeochemical signature. GENTOO demonstrated the capability of ocean gliders to play a key role in a future multi-disciplinary Southern Ocean observing system.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-07-12
    Description: The Almeria–Oranfront forms where surface waters of Atlantic and Mediterranean origin meet at the eastern end of the Alboran Sea. A multidisciplinary field experiment on RRS Discovery in December 1996, in the second observational phase of the EU-funded Observations and Modelling of Eddy scale Geostrophic and Ageostrophic motions (OMEGA) project, observed the biological impact of mesoscale frontal instability of the Almeria–Oran frontal jet. It is concluded that periodic vertical velocities of ∼20 m/day, associated with the propagation of wave-like meanders along the front, have a significant effect on the vertical distribution of zooplankton across the front despite their ability to migrate at greater speeds. Observations of a layer of fluorescence coincident with subducted surface waters indicated that phytoplankton were drawn down and along isopycnals, by cross-front ageostrophic motion, to depths of 200 m. From the study of sound-scattering layers (SSL) identified in acoustic backscatter data, a layer of zooplankton was found coincident with the drawn-down phytoplankton. This layer persisted during and despite diel vertical migration. High-resolution optical plankton counter (OPC) data showed smaller zooplankton, which did not undertake diel vertical migration, remained concentrated near the surface in the fast-flowing frontal jet.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-09-22
    Description: Continuous Plankton Recorder data suggest that the Irminger Sea supports a major proportion of the surface-living population of the copepod Calanus finmarchicus in the northern North Atlantic, but there have been few studies of its population dynamics in the region. In this paper, we document the seasonal changes in the demographic structure of C. finmarchicus in the Irminger Sea from a field programme during 2001/2002, and the associations between its developmental stages and various apparent bio-physical zones. Overwintering stages were found widely at depth (〉500 m) across the Irminger Sea, and surviving females were widely distributed in the surface waters the following spring. However, recruitment of the subsequent generation was concentrated around the fringes of the Irminger Sea basin, along the edges of the Irminger and East Greenland Currents, and not in the central basin. In late summer animals were found descending back to overwintering depths in the Central Irminger Sea. The key factors dictating this pattern of recruitment appear to be (a) the general circulation regime, (b) predation on eggs in the spring, possibly by the surviving G0 stock, and (c) mortality of first feeding naupliar stages in the central basin where food concentrations appear to be low throughout the year. We compared the demographic patterns in 2001/2002 with observations from the only previous major survey in 1963 and with data from the Continuous Plankton Recorder (CPR) surveys. In both previous data sets, the basic structure of G0 ascent from the central basin and G1 recruitment around the fringes was a robust feature, suggesting that it is a recurrent phenomenon. The Irminger Sea is a complex mixing zone between polar and Atlantic water masses, and it has also been identified as a site of sporadic deep convection. The physical oceanographic characteristics of the region are therefore potentially sensitive to climate fluctuations. Despite this, the abundance of C. finmarchicus in the region, as measured by the CPR surveys, appears not to have responded to climate factors linked to the North Atlantic Oscillation Index, in contrast with the stocks in eastern Atlantic areas. We speculate that this may because biological factors (production and mortality), rather than transport processes are the key factors affecting the population dynamics in the Irminger Sea.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-23
    Description: The past ∼200 million years of Earth's geomagnetic field behavior have been recorded within oceanic basalts, many of which are only accessible via scientific ocean drilling. Obtaining the best possible paleomagnetic measurements from such valuable samples requires an a priori understanding of their magnetic mineralogies when choosing the most appropriate protocol for stepwise demagnetization experiments (either alternating field or thermal). Here, we present a quick, and non‐destructive method that utilizes the amplitude‐dependence of magnetic susceptibility to screen submarine basalts prior to choosing a demagnetization protocol, whenever conducting a pilot study or other detailed rock‐magnetic characterization is not possible. We demonstrate this method using samples acquired during International Ocean Discovery Program Expedition 391. Our approach is rooted in the observation that amplitude‐dependent magnetic susceptibility is observed in basalt samples whose dominant magnetic carrier is multidomain titanomagnetite (∼TM 60–65 , (Ti 0.60–0.65 Fe 0.35–0.40 )Fe 2 O 4 ). Samples with low Ti contents within titanomagnetite or samples that have experienced a high degree of oxidative weathering do not display appreciable amplitude dependence. Due to their low Curie temperatures, basalts that possess amplitude‐dependence should ideally be demagnetized either using alternating fields or via finely‐spaced thermal demagnetization heating steps below 300°C. Our screening method can enhance the success rate of paleomagnetic studies of oceanic basalt samples. Plain Language Summary Oceanic basalts are ideal recorders of the Earth's magnetic field. To decipher magnetic histories recorded in rocks, paleomagnetists need to isolate the magnetization directions and intensities within rocks by one of two possible methods. One method typically involves progressively heating the samples to high temperatures. The other method involves exposing samples to alternating magnetic fields with increasing peak field intensities. Both of these methods are ultimately destructive to the original magnetization preserved within rocks. However, without knowledge of a given rock's magnetic mineralogy, randomly choosing thermal or alternating field demagnetization methods may result in high failure rates. We developed a pre‐screening method to help decide which cleaning method will likely be more successful for a given sample based on low‐field magnetic susceptibility measurements. These measurements do not affect the original magnetic information recorded in a rock, thereby permitting subsequent paleomagnetic studies on the same sample. Our technique can be performed as rapidly as 2 min per sample, is non‐destructive, and does not require complicated sample preparation. Key Points Paleomagnetic studies utilize either alternating field or thermal demagnetization, but it is difficult to choose the best protocol a priori Amplitude‐dependence of magnetic susceptibility measurements permits preliminary magnetic mineralogy characterization in submarine basalts Rapid amplitude‐dependence measurements may aid in deciding upon the best demagnetization protocol for submarine basalt samples
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-07
    Description: Valdivia Bank (VB) is a Late Cretaceous oceanic plateau formed by volcanism from the Tristan-Gough hotspot at the Mid-Atlantic Ridge (MAR). To better understand its origin and evolution, magnetic data were used to generate a magnetic anomaly grid, which was inverted to determine crustal magnetization. The magnetization model reveals quasi-linear polarity zones crossing the plateau and following expected MAR paleo-locations, implying formation by seafloor spreading over ∼4 Myr during the formation of anomalies C34n-C33r. Paleomagnetism and biostratigraphy data from International Ocean Discovery Program Expedition 391 confirm the magnetic interpretation. Anomaly C33r is split into two negative bands, likely by a westward ridge jump. One of these negative anomalies coincides with deep rift valleys, indicating their age and mechanism of formation. These findings imply that VB originated by seafloor spreading-type volcanism during a plate reorganization, not from a vertical stack of lava flows as expected for a large volcano. Key Points - Valdivia Bank is characterized by quasi-linear magnetic anomalies that are parallel to the inferred paleo-Mid-Atlantic Ridge - Magnetic anomalies imply that the plateau becomes younger E-W consistent with formation via seafloor spreading during anomalies C34n-C33r - Rift valleys, division of C33r, and anomaly curvature imply complex ridge tectonics and a ridge jump
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...