GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Geophysical research letters, Hoboken, NJ : Wiley, 1974, 35(2008), 1944-8007
    In: volume:35
    In: year:2008
    In: extent:5
    Description / Table of Contents: Hydrogen peroxide (H2O2) is an important oxidant for many bio-relevant trace metals and organic compounds and has potential as a tracer for mixing in near surface waters. In this study we combine H2O2 and bio-optical measurements with satellite data for a meridional transect from 46ʿN to 26ʿS in the eastern Atlantic in order to determine the key processes affecting its distribution. Surface H2O2 ranged from 21123 nmol L-1, with maximum inventories (0200 m) of 5.55.9 mmol m-2 found at 30ʿN and 25ʿS. Analyses showed a strong positive correlation of surface H2O2 with daily irradiances and recent precipitation, though poor correlations with CDOM suggest sunlight is the limiting reactant for H2O2 formation. Vertical distributions of H2O2 were controlled by a combination of mixing processes and phytoplankton activity. The present study highlights processes controlling global H2O2 distributions and points towards the development of parameterization schemes for prediction via satellite data.
    Type of Medium: Online Resource
    Pages: 5
    ISSN: 1944-8007
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Elsevier
    In:  Deep-Sea Research Part I-Oceanographic Research Papers, 58 (11). pp. 1049-1059.
    Publication Date: 2017-10-24
    Description: On voyages in the Iceland Basin in 2007 and 2009, we observed low (ca. 0.1nM) total dissolved iron concentrations dFe in surface waters (〈150m), which increased with depth to ca. 0.2-0.9nM. The surface water dFe was low due to low atmospheric Fe inputs combined with biological uptake, with Fe regeneration from microbial degradation of settling biogenic particles supplying dFe at depth. The organic ligand concentrations LT in the surface waters ranged between 0.4 and 0.5nM, with conditional stability constants (logK'FeL) between 22.6 and 22.7. Furthermore, LT was in excess of dFe throughout the water column, and dFe was therefore largely complexed by organic ligands (>99%). The ratio of LT/dFe was used to analyse trends in Fe speciation. Enhanced and variable LT/dFe ratios ranging between 1.6 and 5.8 were observed in surface waters; the ratio decreased with depth to a more constant LT/dFe ratio in deep waters. In the Iceland Basin and Rockall Trough, enhanced LT/dFe ratios in surface waters resulted from decreases in dFe, likely reflecting the conditions of Fe limitation of the phytoplankton community in the surface waters of the Iceland Basin and the high productivity in the Rockall Trough.Below the surface mixed layer, the observed increase in dFe resulted in a decrease of the LT/dFe ratios (1.2-2.6) with depth. This indicated that the Fe binding ligand sites became occupied and even almost saturated at enhanced dFe in the deeper waters. Furthermore, our results showed a quasi-steady state in deep waters between dissolved organic Fe ligands and dFe, reflecting a balance between Fe removal by scavenging and Fe supply by remineralisation of biogenic particles with stabilisation through ligands. © 2011 Elsevier Ltd.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-08-01
    Description: A compilation of more than 30 studies shows that adult Antarctic krill (Euphausia superba) may frequent benthic habitats year-round, in shelf as well as oceanic waters and throughout their circumpolar range. Net and acoustic data from the Scotia Sea show that in summer 2-20 of the population reside at depths between 200 and 2000 m, and; that large aggregations can form above the seabed. Local differences in the vertical distribution of krill indicate that reduced feeding success in surface waters, either due to predator encounter or food shortage, might initiate such deep migrations and results in benthic feeding. Fatty acid and microscopic analyses of stomach content confirm two different foraging habitats for Antarctic krill: the upper ocean, where fresh phytoplankton is the main food source, and deeper water or the seabed, where detritus and copepods are consumed. Krill caught in upper waters retain signals of benthic feeding, suggesting frequent and dynamic exchange between surface and seabed. Krill contained up to 260 nmol iron per stomach when returning from seabed feeding. About 5 of this iron is labile, i.e., potentially available to phytoplankton. Due to their large biomass, frequent benthic feeding, and acidic digestion of particulate iron, krill might facilitate an input of new iron to Southern Ocean surface waters. Deep migrations and foraging at the seabed are significant parts of krill ecology, and the vertical fluxes involved in this behavior are important for the coupling of benthic and pelagic food webs and their elemental repositories. © 2011, by the American Society of Limnology and Oceanography, Inc.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-10-25
    Description: Diatoms of the iron-replete continental margins and North Atlantic are key exporters of organic carbon. In contrast, diatoms of the iron-limited Antarctic Circumpolar Current sequester silicon, but comparatively little carbon, in the underlying deep ocean and sediments. Because the Southern Ocean is the major hub of oceanic nutrient distribution, selective silicon sequestration there limits diatom blooms elsewhere and consequently the biotic carbon sequestration potential of the entire ocean. We investigated this paradox in an in situ iron fertilization experiment by comparing accumulation and sinking of diatom populations inside and outside the iron-fertilized patch over 5 wk. A bloom comprising various thin- and thick-shelled diatom species developed inside the patch despite the presence of large grazer populations. After the third week, most of the thinner-shelled diatom species underwent mass mortality, formed large, mucous aggregates, and sank out en masse (carbon sinkers). In contrast, thicker-shelled species, in particular Fragilariopsis kerguelensis, persisted in the surface layers, sank mainly empty shells continuously, and reduced silicate concentrations to similar levels both inside and outside the patch (silica sinkers). These patterns imply that thick-shelled, hence grazer-protected, diatom species evolved in response to heavy copepod grazing pressure in the presence of an abundant silicate supply. The ecology of these silica-sinking species decouples silicon and carbon cycles in the iron-limited Southern Ocean, whereas carbon-sinking species, when stimulated by iron fertilization, export more carbon per silicon. Our results suggest that large-scale iron fertilization of the silicate-rich Southern Ocean will not change silicon sequestration but will add carbon to the sinking silica flux.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-02-05
    Description: Low dissolved iron (DFe) concentrations limit primary production in most high-nutrient low-chlorophyll (HNLC) regions. Increased recycling of iron (Fe) relative to nitrogen (N) by zooplankton may help to sustain phytoplankton production in these conditions. We concurrently determined rates of DFe and ammonium (NH4 +) recycling by natural mesozooplankton communities in HNLC conditions of the Northeast Atlantic. NH4 + excretion remained constant and ranged between 14.2-54.1nmol NH4 + mg dry weight-1h-1. Fe recycling ranged between 6-138 pmol DFe mg dry weight-1h-1 during the first hour and decreased thereafter, reflecting the transition from the loss of phytoplankton-derived Fe to basal DFe excretion. Mesozooplankton-driven nutrient recycling was estimated to support 6-59 and 〈1-13 of the respective phytoplankton requirements for DFe and N; DFe:N regeneration ratios were 5-26 times larger than those required by phytoplankton. Our data suggest that Fe recycling by grazing organisms has the potential to reduce the intensity of HNLC conditions. © 2012. American Geophysical Union. All Rights Reserved.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-01-27
    Description: The Southern Ocean is an important biogeochemical region on a global scale, in which mineralising phytoplankton play a role in cycling energy, carbon and nutrients. Mineralising phytoplankton with cells 2-20. μm in diameter (nannoplankton) are poorly enumerated by traditional preservation and microscopy techniques, yet may fulfil an important role in the Southern Ocean. Here we define the spatial and temporal biogeography for these mineralising nannoplankton assessed by scanning electron microscopy in conjunction with an array of biological, physical, and chemical variables during two cruises to the Scotia Sea region of the Southern Ocean. The cruises encompassed two seasons, austral summer (January-February 2008) and austral autumn (March-April 2009).The biogeography of the three most numerous mineralising nannoplankton groups, the coccolithophore Emiliania huxleyi, the smaller (〈10μm) species of the diatom genus Fragilariopsis, and chrysophytes of the genus Tetraparma (mostly Tetraparma pelagica) were found to be related to the boundaries of the major circumpolar fronts. E. huxleyi abundances were relatively high in the northern water masses (maximum of 650cellsml -1), while T. pelagica abundances were high in the southern water masses (maximum of 1910cellsml -1). Small Fragilariopsis spp. abundances were also highest in the southern water masses (maximum of 1820cellsml -1), but this group was present throughout the Scotia Sea.Multivariate statistical analysis found that the most influential environmental variables controlling mineralising nannoplankton biogeography were sea surface temperature and silicate concentration. Estimates of biomass indicated that the Scotia Sea mineralising nannoplankton community formed a substantial part of the total phytoplankton community, particularly south of the Southern Antarctic Circumpolar Current Front (SACCF) during the austral autumn, where mineralising nannoplankton biomass reached 36 of the total phytoplankton biomass. The results that are obtained suggest that traditional microscopic surveys of large Southern Ocean phytoplankton may underestimate total biomass by excluding key mineralising nannoplankton groups. Greater appreciation of the ecological significance of mineralising nannoplankton in the Southern Ocean will improve our understanding of the relationships between environmental parameters, primary production, and the biological carbon pump in this ecosystem. © 2011 Elsevier Ltd.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-01-27
    Description: Aeolian dust transport from the Saharan/Sahel desert regions is considered the dominant external input of iron (Fe) to the surface waters of the eastern (sub-) tropical North Atlantic Ocean. To test this hypothesis, we investigated the sources of dissolved Fe (DFe) and quantified DFe fluxes to the surface ocean in this region. In winter 2008, surface water DFe concentrations varied between 〈0.1 nM and 0.37 nM, with an average of 0.13 ̃ 0.07 nM DFe (n = 194). A strong correlation between mixed layer averaged concentrations of dissolved aluminum (DAl), a proxy for dust input, and DFe indicated dust as a source of DFe to the surface ocean. The importance of Aeolian nutrient input was further confirmed by an increase of 0.1 nM DFe and 0.05 μM phosphate during a repeat transect before and after a dust event. An exponential decrease of DFe with increasing distance from the African continent, suggested that continental shelf waters were a source of DFe to the northern part of our study area. Relatively high Fe:C ratios of up to 3 ° 10°5 (C derived from apparent oxygen utilization (AOU)) indicated an external source of Fe to these African continental shelf waters. Below the wind mixed layer along 12°N, enhanced DFe concentrations (〉1.5 nM) correlated positively with apparent oxygen utilization (AOU) and showed the importance of organic matter remineralization as an DFe source. As a consequence, vertical diffusive mixing formed an important Fe flux to the surface ocean in this region, even surpassing that of a major dust event. © 2012. American Geophysical Union.
    Type: Article , PeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-04-23
    Description: In this study we report diapycnal diffusive fluxes of dissolved iron (dFe), dissolved aluminium (dAl) and the major macronutrients to the surface waters of the North Atlantic subpolar gyre. Turbulent diffusivities at the base of the summer mixed layer ranged from 0.01 to 0.5 (median 0.07) cm2 s−1 and daily macronutrient fluxes into the surface mixed layer typically represented 〈 0.5% of integrated mixed layer inventories, although fluxes were highly variable. Elevated nutrient fluxes of up to 4% of mixed layer inventories were identified on the Greenland Shelf, where integrated nutrient pools were lowest due to localised shoaling of the mixed layer. Diffusive fluxes of dFe and dAl were typically 〈0.1% of mixed layer inventories but were also highly variable between stations. Approximations of daily phytoplankton nutrient and Fe uptake indicate that the diffusive flux may at best represent 〈10% of phytoplankton macronutrient uptake, and only 1% of daily phytoplankton Fe uptake. The daily turbulent diffusive flux of dFe was comparable in magnitude to coincident estimates of aeolian Fe supply but despite shallower than normal convective mixing in winter 2010 the diffusive supply was 22 and 59 times smaller than the annual convective supply of Fe to the Irminger and Iceland basins respectively. The general picture obtained from this study is one of small magnitude diffusive nutrient and Fe fluxes to the subpolar North Atlantic during the period of annual nutrient minima and indicates that the diffusive supply mechanism is unlikely to alleviate the recently identified presence of seasonal iron limitation within the North Atlantic subpolar gyre; a condition exacerbated by low dFe:NO3− ratios in subsurface source waters.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 35 (L03616).
    Publication Date: 2019-09-23
    Description: Hydrogen peroxide (H2O2) is an important oxidant for many bio-relevant trace metals and organic compounds and has potential as a tracer for mixing in near surface waters. In this study we combine H2O2 and bio-optical measurements with satellite data for a meridional transect from 46 degrees N to 26 degrees S in the eastern Atlantic in order to determine the key processes affecting its distribution. Surface H2O2 ranged from 21 - 123 nmol L-1, with maximum inventories (0 - 200 m) of 5.5 - 5.9 mmol m(-2) found at 30 degrees N and 25 degrees S. Analyses showed a strong positive correlation of surface H2O2 with daily irradiances and recent precipitation, though poor correlations with CDOM suggest sunlight is the limiting reactant for H2O2 formation. Vertical distributions of H2O2 were controlled by a combination of mixing processes and phytoplankton activity. The present study highlights processes controlling global H2O2 distributions and points towards the development of parameterization schemes for prediction via satellite data. Citation: Steigenberger, S., and P. L. Croot (2008), Identifying the processes controlling the distribution of H2O2 in surface waters along a meridional transect in the eastern Atlantic.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-12-18
    Description: Diatoms of the iron-replete continental margins and North Atlantic are key exporters of organic carbon. In contrast, diatoms of the iron-limited Antarctic Circumpolar Current sequester silicon, but comparatively little carbon, in the underlying deep ocean and sediments. Because the Southern Ocean is the major hub of oceanic nutrient distribution, selective...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...