GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-07-30
    Description: In this paper, we review the state of the art and major challenges in current efforts to incorporate biogeochemical functional groups into models that can be applied on basin-wide and global scales, with an emphasis on models that might ultimately be used to predict how biogeochemical cycles in the ocean will respond to global warming. We define the term “biogeochemical functional group” to refer to groups of organisms that mediate specific chemical reactions in the ocean. Thus, according to this definition, “functional groups” have no phylogenetic meaning—these are composed of many different species with common biogeochemical functions. Substantial progress has been made in the last decade toward quantifying the rates of these various functions and understanding the factors that control them. For some of these groups, we have developed fairly sophisticated models that incorporate this understanding, e.g. for diazotrophs (e.g. Trichodesmium), silica producers (diatoms) and calcifiers (e.g. coccolithophorids and specifically Emiliania huxleyi). However, current representations of nitrogen fixation and calcification are incomplete, i.e., based primarily upon models of Trichodesmium and E. huxleyi, respectively, and many important functional groups have not yet been considered in open-ocean biogeochemical models. Progress has been made over the last decade in efforts to simulate dimethylsulfide (DMS) production and cycling (i.e., by dinoflagellates and prymnesiophytes) and denitrification, but these efforts are still in their infancy, and many significant problems remain. One obvious gap is that virtually all functional group modeling efforts have focused on autotrophic microbes, while higher trophic levels have been completely ignored. It appears that in some cases (e.g., calcification), incorporating higher trophic levels may be essential not only for representing a particular biogeochemical reaction, but also for modeling export. Another serious problem is our tendency to model the organisms for which we have the most validation data (e.g., E. huxleyi and Trichodesmium) even when they may represent only a fraction of the biogeochemical functional group we are trying to represent. When we step back and look at the paleo-oceanographic record, it suggests that oxygen concentrations have played a central role in the evolution and emergence of many of the key functional groups that influence biogeochemical cycles in the present-day ocean. However, more subtle effects are likely to be important over the next century like changes in silicate supply or turbulence that can influence the relative success of diatoms versus dinoflagellates, coccolithophorids and diazotrophs. In general, inferences drawn from the paleo-oceanographic record and theoretical work suggest that global warming will tend to favor the latter because it will give rise to increased stratification. However, decreases in pH and Fe supply could adversely impact coccolithophorids and diazotrophs in the future. It may be necessary to include explicit dynamic representations of nitrogen fixation, denitrification, silicification and calcification in our models if our goal is predicting the oceanic carbon cycle in the future, because these processes appear to play a very significant role in the carbon cycle of the present-day ocean and they are sensitive to climate change. Observations and models suggest that it may also be necessary to include the DMS cycle to predict future climate, though the effects are still highly uncertain. We have learned a tremendous amount about the distributions and biogeochemical impact of bacteria in the ocean in recent years, yet this improved understanding has not yet been incorporated into many of our models. All of these considerations lead us toward the development of increasingly complex models. However, recent quantitative model intercomparison studies suggest that continuing to add complexity and more functional groups to our ecosystem models may lead to decreases in predictive ability if the models are not properly constrained with available data. We also caution that capturing the present-day variability tells us little about how well a particular model can predict the future. If our goal is to develop models that can be used to predict how the oceans will respond to global warming, then we need to make more rigorous assessments of predictive skill using the available data.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Royal Society of Chemistry
    In:  Energy & Environmental Science, 4 (4). pp. 1133-1146.
    Publication Date: 2019-01-22
    Description: We review data on the absorption of anthropogenic CO2 by Northern Hemisphere marginal seas (Arctic Ocean, Mediterranean Sea, Sea of Okhotsk, and East/Japan Sea) and its transport to adjacent major basins, and consider the susceptibility to recent climatic change of key factors that influence CO2 uptake by these marginal seas. Dynamic overturning circulation is a common feature of these seas, and this effectively absorbs anthropogenic CO2 and transports it from the surface to the interior of the basins. Amongst these seas only the East/Japan Sea has no outflow of intermediate and deep water (containing anthropogenic CO2) to an adjacent major basin; the others are known to be significant sources of intermediate and deep water to the open ocean. Consequently, only the East/Japan Sea retains all the anthropogenic CO2 absorbed during the anthropocene. Investigations of the properties of the water column in these seas have revealed a consistent trend of waning water column ventilation over time, probably because of changes in local atmospheric forcing. This weakening ventilation has resulted in a decrease in transport of anthropogenic CO2 from the surface to the interior of the basins, and to the adjacent open ocean. Ongoing measurements of anthropogenic CO2, other gases and hydrographic parameters in these key marginal seas will provide information on changes in global oceanic CO2 uptake associated with the predicted increasing atmospheric CO2 and future global climate change. We also review the roles of other marginal seas with no active overturning circulation systems in absorbing and storing anthropogenic CO2. The absence of overturning circulation enables anthropogenic CO2 to penetrate only into shallow depths, resulting in less accumulation of anthropogenic CO2 in these basins. As a consequence of their proximity to populated continents, these marginal seas are particularly vulnerable to human-induced perturbations. Maintaining observation programs will make it possible to assess the effects of human-induced changes on the capacity of these seas to uptake and store anthropogenic CO2.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-03-26
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  [Talk] In: 2. International Symposium Effects of Climate Change on the World's Oceans, 15.-19.05.2012, Yeosu, Korea .
    Publication Date: 2012-12-03
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-09-09
    Description: Using inorganic carbon measurements from an international survey effort in the 1990s and a tracer-based separation technique, we estimate a global oceanic anthropogenic carbon dioxide (CO2) sink for the period from 1800 to 1994 of 118 ± 19 petagrams of carbon. The oceanic sink accounts for ∼48% of the total fossil-fuel and cement-manufacturing emissions, implying that the terrestrial biosphere was a net source of CO2 to the atmosphere of about 39 ± 28 petagrams of carbon for this period. The current fraction of total anthropogenic CO2 emissions stored in the ocean appears to be about one-third of the long-term potential.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-09-27
    Description: The Surface Ocean CO2 Atlas (SOCAT) is a synthesis of quality-controlled fCO2 (fugacity of carbon dioxide) values for the global surface oceans and coastal seas with regular updates. Version 3 of SOCAT has 14.7 million fCO2 values from 3646 data sets covering the years 1957 to 2014. This latest version has an additional 4.6 million fCO2 values relative to version 2 and extends the record from 2011 to 2014. Version 3 also significantly increases the data availability for 2005 to 2013. SOCAT has an average of approximately 1.2 million surface water fCO2 values per year for the years 2006 to 2012. Quality and documentation of the data has improved. A new feature is the data set quality control (QC) flag of E for data from alternative sensors and platforms. The accuracy of surface water fCO2 has been defined for all data set QC flags. Automated range checking has been carried out for all data sets during their upload into SOCAT. The upgrade of the interactive Data Set Viewer (previously known as the Cruise Data Viewer) allows better interrogation of the SOCAT data collection and rapid creation of high-quality figures for scientific presentations. Automated data upload has been launched for version 4 and will enable more frequent SOCAT releases in the future. High-profile scientific applications of SOCAT include quantification of the ocean sink for atmospheric carbon dioxide and its long-term variation, detection of ocean acidification, as well as evaluation of coupled-climate and ocean-only biogeochemical models. Users of SOCAT data products are urged to acknowledge the contribution of data providers, as stated in the SOCAT Fair Data Use Statement. This ESSD (Earth System Science Data) "living data" publication documents the methods and data sets used for the assembly of this new version of the SOCAT data collection and compares these with those used for earlier versions of the data collection (Pfeil et al., 2013; Sabine et al., 2013; Bakker et al., 2014). Individual data set files, included in the synthesis product, can be downloaded here: doi:10.1594/PANGAEA.849770. The gridded products are available here: doi:10.3334/CDIAC/OTG.SOCAT_V3_GRID.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-02-08
    Description: The Global Ocean Data Analysis Project (GLODAP) is a synthesis effort providing regular compilations of surface-to-bottom ocean biogeochemical data, with an emphasis on seawater inorganic carbon chemistry and related variables determined through chemical analysis of seawater samples. GLODAPv2.2020 is an update of the previous version, GLODAPv2.2019. The major changes are data from 106 new cruises added, extension of time coverage to 2019, and the inclusion of available (also for historical cruises) discrete fugacity of CO2 (fCO2) values in the merged product files. GLODAPv2.2020 now includes measurements from more than 1.2 million water samples from the global oceans collected on 946 cruises. The data for the 12 GLODAP core variables (salinity, oxygen, nitrate, silicate, phosphate, dissolved inorganic carbon, total alkalinity, pH, CFC-11, CFC-12, CFC-113, and CCl4) have undergone extensive quality control with a focus on systematic evaluation of bias. The data are available in two formats: (i) as submitted by the data originator but updated to WOCE exchange format and (ii) as a merged data product with adjustments applied to minimize bias. These adjustments were derived by comparing the data from the 106 new cruises with the data from the 840 quality-controlled cruises of the GLODAPv2.2019 data product using crossover analysis. Comparisons to empirical algorithm estimates provided additional context for adjustment decisions; this is new to this version. The adjustments are intended to remove potential biases from errors related to measurement, calibration, and data-handling practices without removing known or likely time trends or variations in the variables evaluated. The compiled and adjusted data product is believed to be consistent to better than 0.005 in salinity, 1 % in oxygen, 2 % in nitrate, 2 % in silicate, 2 % in phosphate, 4 µmol kg−1 in dissolved inorganic carbon, 4 µmol kg−1 in total alkalinity, 0.01–0.02 in pH (depending on region), and 5 % in the halogenated transient tracers. The other variables included in the compilation, such as isotopic tracers and discrete fCO2, were not subjected to bias comparison or adjustments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-02-08
    Description: Seawater Mg:Ca and Sr:Ca ratios are biogeochemical parameters reflecting the Earth-ocean-atmosphere dynamic exchange of elements. The ratios' dependence on the environment and organisms' biology facilitates their application in marine sciences. Here, we present a measured single-laboratory dataset, combined with previous data, to test the assumption of limited seawater Mg:Ca and Sr:Ca variability across marine environments globally. High variability was found in open-ocean upwelling and polar regions, shelves/neritic and river-influenced areas, where seawater Mg:Ca and Sr:Ca ratios range from ∼4.40 to 6.40 mmol:mol and ∼6.95 to 9.80 mmol:mol, respectively. Open-ocean seawater Mg:Ca is semiconservative (∼4.90 to 5.30 mol:mol), while Sr:Ca is more variable and nonconservative (∼7.70 to 8.80 mmol:mol); both ratios are nonconservative in coastal seas. Further, the Ca, Mg, and Sr elemental fluxes are connected to large total alkalinity deviations from International Association for the Physical Sciences of the Oceans (IAPSO) standard values. Because there is significant modern seawater Mg:Ca and Sr:Ca ratios variability across marine environments we cannot absolutely assume that fossil archives using taxa-specific proxies reflect true global seawater chemistry but rather taxa- and process-specific ecosystem variations, reflecting regional conditions. This variability could reconcile secular seawater Mg:Ca and Sr:Ca ratio reconstructions using different taxa and techniques by assuming an error of 1 to 1.50 mol:mol, and 1 to 1.90 mmol:mol, respectively. The modern ratios' variability is similar to the reconstructed rise over 20 Ma (Neogene Period), nurturing the question of seminonconservative behavior of Ca, Mg, and Sr over modern Earth geological history with an overlooked environmental effect.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: text
    Format: other
    Format: other
    Format: other
    Format: other
    Format: other
    Format: other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-10-10
    Description: The Global Ocean Data Analysis Project (GLODAP) is a synthesis effort providing regular compilations of surface-to-bottom ocean biogeochemical bottle data, with an emphasis on seawater inorganic carbon chemistry and related variables determined through chemical analysis of seawater samples. GLODAPv2.2022 is an update of the previous version, GLODAPv2.2021 (Lauvset et al., 2021). The major changes are as follows: data from 96 new cruises were added, data coverage was extended until 2021, and for the first time we performed secondary quality control on all sulphur hexafluoride (SF6) data. In addition, a number of changes were made to data included in GLODAPv2.2021. These changes affect specifically the SF6 data, which are now subjected to secondary quality control, and carbon data measured onboard the RV Knorr in the Indian Ocean in 1994–1995 which are now adjusted using CRM measurements made at the time. GLODAPv2.2022 includes measurements from almost 1.4 million water samples from the global oceans collected on 1085 cruises. The data for the now 13 GLODAP core variables (salinity, oxygen, nitrate, silicate, phosphate, dissolved inorganic carbon, total alkalinity, pH, CFC-11, CFC-12, CFC-113, CCl4, and SF6) have undergone extensive quality control with a focus on systematic evaluation of bias. The data are available in two formats: (i) as submitted by the data originator but converted to World Ocean Circulation Experiment (WOCE) exchange format and (ii) as a merged data product with adjustments applied to minimize bias. For the present annual update, adjustments for the 96 new cruises were derived by comparing those data with the data from the 989 quality controlled cruises in the GLODAPv2.2021 data product using crossover analysis. SF6 data from all cruises were evaluated by comparison with CFC-12 data measured on the same cruises. For nutrients and ocean carbon dioxide (CO2) chemistry comparisons to estimates based on empirical algorithms provided additional context for adjustment decisions. The adjustments that we applied are intended to remove potential biases from errors related to measurement, calibration, and data handling practices without removing known or likely time trends or variations in the variables evaluated. The compiled and adjusted data product is believed to be consistent to better than 0.005 in salinity, 1 % in oxygen, 2 % in nitrate, 2 % in silicate, 2 % in phosphate, 4 μmol kg-1 in dissolved inorganic carbon, 4 μmol kg-1 in total alkalinity, 0.01–0.02 in pH (depending on region), and 5 % in the halogenated transient tracers. The other variables included in the compilation, such as isotopic tracers and discrete CO2 fugacity (fCO2), were not subjected to bias comparison or adjustments.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...