GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Years
  • 1
    Publication Date: 2024-05-02
    Description: The Surface Ocean CO2 Atlas (SOCAT) is a synthesis activity by the international marine carbon research community (〉100 contributors). SOCATv2019 has 25.7 million quality-controlled, surface ocean fCO2 (fugacity of carbon dioxide) observations from 1957 to 2019 for the global oceans and coastal seas. Calibrated sensor data are also available. Automation allows annual, public releases. SOCAT data is discoverable, accessible and citable. SOCAT enables quantification of the ocean carbon sink and ocean acidification and evaluation of ocean biogeochemical models. SOCAT represents a milestone in biogeochemical and climate research and in informing policy. This publication contains the individual cruise files that are new or updated from SOCATv6, with cruise QC flags A-E and all fCO2 WOCE flags. The synthesis file hosted in NOAA NCEI (see other version) contains A-D cruises and WOCE flag 2 (good) data. To download the SOCATv2019 data product in other formats or subsets, please go to www.socat.info.
    Keywords: SOCAT; SOCATv2019; Surface Ocean CO2 Atlas Project
    Type: Dataset
    Format: application/zip, 531 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Pfeil, Benjamin; Olsen, Are; Bakker, Dorothee C E; Hankin, Steven; Koyuk, Heather; Kozyr, Alexander; Malczyk, Jeremy; Manke, Ansley; Metzl, Nicolas; Sabine, Christopher L; Akl, John; Alin, Simone R; Bellerby, Richard G J; Borges, Alberto Vieira; Boutin, Jacqueline; Brown, Peter J; Cai, Wei-Jun; Chavez, Francisco P; Chen, Arthur; Cosca, Catherine E; Fassbender, Andrea J; Feely, Richard A; González-Dávila, Melchor; Goyet, Catherine; Hardman-Mountford, Nicolas J; Heinze, Christoph; Hood, E Maria; Hoppema, Mario; Hunt, Christopher W; Hydes, David; Ishii, Masao; Johannessen, Truls; Jones, Steve D; Key, Robert M; Körtzinger, Arne; Landschützer, Peter; Lauvset, Siv K; Lefèvre, Nathalie; Lenton, Andrew; Lourantou, Anna; Merlivat, Liliane; Midorikawa, Takashi; Mintrop, Ludger J; Miyazaki, Chihiro; Murata, Akihiko; Nakadate, Akira; Nakano, Yoshiyuki; Nakaoka, Shin-Ichiro; Nojiri, Yukihiro; Omar, Abdirahman M; Padín, Xose Antonio; Park, Geun-Ha; Paterson, Kristina; Pérez, Fiz F; Pierrot, Denis; Poisson, Alain; Ríos, Aida F; Santana-Casiano, Juana Magdalena; Salisbury, Joe; Sarma, Vedula V S S; Schlitzer, Reiner; Schneider, Bernd; Schuster, Ute; Sieger, Rainer; Skjelvan, Ingunn; Steinhoff, Tobias; Suzuki, Toru; Takahashi, Taro; Tedesco, Kathy; Telszewski, Maciej; Thomas, Helmuth; Tilbrook, Bronte; Tjiputra, Jerry; Vandemark, Doug; Veness, Tony; Wanninkhof, Rik; Watson, Andrew J; Weiss, Ray F; Wong, Chi Shing; Yoshikawa-Inoue, Hisayuki (2013): A uniform, quality controlled Surface Ocean CO2 Atlas (SOCAT). Earth System Science Data, 5(1), 125-143, https://doi.org/10.5194/essd-5-125-2013
    Publication Date: 2024-05-02
    Description: A well-documented, publicly available, global data set of surface ocean carbon dioxide (CO2) parameters has been called for by international groups for nearly two decades. The Surface Ocean CO2 Atlas (SOCAT) project was initiated by the international marine carbon science community in 2007 with the aim of providing a comprehensive, publicly available, regularly updated, global data set of marine surface CO2, which had been subject to quality control (QC). Many additional CO2 data, not yet made public via the Carbon Dioxide Information Analysis Center (CDIAC), were retrieved from data originators, public websites and other data centres. All data were put in a uniform format following a strict protocol. Quality control was carried out according to clearly defined criteria. Regional specialists performed the quality control, using state-of-the-art web-based tools, specially developed for accomplishing this global team effort. SOCAT version 1.5 was made public in September 2011 and holds 6.3 million quality controlled surface CO2 data points from the global oceans and coastal seas, spanning four decades (1968-2007). Three types of data products are available: individual cruise files, a merged complete data set and gridded products. With the rapid expansion of marine CO2 data collection and the importance of quantifying net global oceanic CO2 uptake and its changes, sustained data synthesis and data access are priorities.
    Keywords: 0306SFC_PRT; 061ASFC_PRT; 06AQ19860627-track; 06AQ19860928-track; 06AQ19911114-track; 06AQ19911210-track; 06AQ19921005-track; 06AQ19930128-track; 06AQ19930228-track; 06AQ19931019-track; 06AQ19940524-track; 06AQ19951206-track; 06AQ19960320-track; 06AQ19980411-track; 06AQ19990327-track; 06AQ20001004-track; 06AQ20001026-track; 06BE19961010-track; 06CK20060523-track; 06CK20060715-track; 06CK20060821-track; 06GA19960613-track; 06GA276_3; 06LB19831130-track; 06LB19840107-track; 06LB19840629-track; 06LB19850110-track; 06LB19850313-track; 06LB19850812-track; 06LB19860116-track; 06LB19860323-track; 06LB19860801-track; 06LB19861011-track; 06LB19861214-track; 06LB19870221-track; 06LB19870501-track; 06LB19870721-track; 06LB19870920-track; 06LB19871126-track; 06LB19871231-track; 06LB19880204-track; 06MT18_1; 06MT19910903-track; 06MT19920510-track; 06MT19921229-track; 06MT19941012-track; 06MT19941119-track; 06MT19950714-track; 06MT19960607-track; 06MT19960622-track; 06MT19970106-track; 06MT19970516-track; 06MT19970707-track; 06MT19970814-track; 06MT19981228-track; 06MT20021015-track; 06MT20060714; 06MT20060714-track; 06MT22_5; 06MT30_2; 06MT30_3; 06MT37_2; 06MT39_4; 06MT39_5; 06P119910616-track; 06P119950901-track; 06PO20050321; 06PO20050322-track; 07AL19951011-track; 07AL19960218-track; 07AL19970503-track; 07AL19990718-track; 07AL19991101-track; 07AL19991129-track; 07AL20000113-track; 07AL20000210-track; 07AL20000305-track; 07AL20010513-track; 07AL20010607-track; 07AL20010709-track; 07AL20010802-track; 09AR0103; 09AR19910926-track; 09AR19921019-track; 09AR19930105-track; 09AR19930311-track; 09AR19930807-track; 09AR19931119-track; 09AR19940101-track; 09AR19940831-track; 09AR19941213-track; 09AR19950717-track; 09AR19950916-track; 09AR19960119-track; 09AR19960822-track; 09AR19970910-track; 09AR19971114-track; 09AR19980228-track; 09AR19980404-track; 09AR19980715-track; 09AR19990716-track; 09AR20011031-track; 09AR9401; 09AR9404; 09AR9407; 09AR9501; 09AR9502; 09AR9601; 09AR9604; 09AR9701; 09AR9703; 09AR9707; 09AR9801; 09AR9806; 09AR9901; 09FA20000927-track; 09SS19951116-track; 09SS19990205-track; 11BE19940413-track; 11BE19950303-track; 11BE19950912-track; 11BE19970513-track; 11BE19970527-track; 11BE19970609-track; 11BE19970618-track; 11BE19970621; 11BE19970621-track; 11BE19970702-track; 11BE19980107-track; 11BE19980614-track; 11BE19980625-track; 11BE19980710-track; 11BE19990830-track; 11BE19990904-track; 11BE19990914-track; 11BE19990918-track; 11BE20010502-track; 11BE20010514-track; 11BE20010522-track; 11BE20020422-track; 11BE20020511-track; 11BE20020528-track; 11BE20021104-track; 11BE20030331-track; 11BE20030901; 11BE20030901-track; 11BE20031027; 11BE20031027-track; 11BE20031208; 11BE20031208-track; 11BE20040223; 11BE20040223-track; 11BE20040329; 11BE20040329-track; 11BE20040524; 11BE20040524-track; 11BE20040601-track; 11BE20041004; 11BE20041004-track; 11BE20060425; 11BE20060425-track; 11BE20060529-track; 11BE20070507-track; 18QA19730812-track; 18QA19731028-track; 18QA19760111-track; 18QA19760619-track; 18QA19760911-track; 18QA19761204-track; 18VC19740105-track; 18VC19740216-track; 18VC19741113-track; 18VC19750622-track; 18VC19750913-track; 1995-10-BS; 1996-02-BS; 1997-05-BS; 1999-07-BS; 1999-11-BS; 1999-12-BS; 2000-01-BS; 2000-02-BS; 2000-03-BS; 2001-05-BS; 2001-06-BS; 2001-07-BS; 2001-08-BS; 2003-06-BS; 2003-07-BS; 2003-08-BS; 2003-09-BS; 2003-10-BS; 2004-02-BS; 2004-03-BS; 2004-04-BS; 2004-05-BS; 2004-06-BS; 2004-07-BS; 2004-08-BS; 2004-09-BS; 2004-10-BS; 2005-01-BS; 2005-02-BS; 2005-03-BS; 2005-04-BS; 2005-05-BS; 2005-06-BS; 2005-07-BS; 2005-08-BS; 2005-09-BS; 2005-10-BS; 2005-11-BS; 2005-12-BS; 2006-03-BS; 2006-04-BS; 2006-05-BS; 2006-06-BS; 2006-07-BS; 2006-08-BS; 2006-09-BS; 20070110_TC2; 20070117_TC2; 20070123_TC2; 20070130_TC2; 20070207_TC2; 20070219_TC2; 20070227_TC2; 20070305_TC2; 20070320_TC2; 20070327_TC2; 20070402_TC2; 20070409_TC2; 20070416_TC2; 20070423_TC2; 20070430_TC2; 20070508_TC2; 20070515_TC2; 20070521_TC2; 20070529_TC2; 20070604_TC2; 20070613_TC2; 20070620_TC2; 20070627_TC2; 20070703_TC2; 20070709_TC2; 20070716_TC2; 20070723_TC2; 20070730_TC2; 2007-07-BS; 20070806_TC2; 20070815_TC2; 20070820_TC2; 20070827_TC2; 2007-08-BS; 20070903_TC2; 20070910_TC2; 20070917_TC2; 20071001_TC2; 20071008_TC2; 20071010_TC2; 20071015_TC2; 20071023_TC2; 20071105_TC2; 20071115_TC2; 20071120_TC2; 20071128_TC2; 20071204_TC2; 20071211_TC2; 20071218_TC2; 20071225_TC2; 24N98L1; 24N98L2; 26GC20010421-track; 26GC20010831-track; 26NA20050107; 26NA20050107-track; 26NA20050115; 26NA20050115-track; 26NA20050130; 26NA20050130-track; 26NA20050207; 26NA20050207-track; 26NA20050317; 26NA20050317-track; 26NA20050321; 26NA20050321-track; 26NA20050402; 26NA20050402-track; 26NA20050420; 26NA20050420-track; 26NA20050502; 26NA20050502-track; 26NA20050511; 26NA20050511-track; 26NA20050523; 26NA20050523-track; 26NA20050531; 26NA20050531-track; 26NA20050614; 26NA20050614-track; 26NA20050624; 26NA20050624-track; 26NA20050714; 26NA20050714-track; 26NA20050720; 26NA20050720-track; 26NA20050730; 26NA20050730-track; 26NA20050805; 26NA20050805-track; 26NA20050815; 26NA20050815-track; 26NA20050824; 26NA20050824-track; 26NA20050914; 26NA20050914-track; 26NA20050927; 26NA20050927-track; 26NA20051005; 26NA20051005-track; 26NA20051018; 26NA20051018-track; 26NA20051026; 26NA20051026-track; 26NA20051110; 26NA20051110-track; 26NA20051117; 26NA20051117-track; 26NA20051130; 26NA20051130-track; 26NA20060518; 26NA20060518-track; 26NA20060527; 26NA20060527-track; 26NA20060607; 26NA20060607-track; 26NA20060617; 26NA20060617-track; 26NA20060628; 26NA20060628-track; 26NA20060708; 26NA20060708-track; 26NA20060719; 26NA20060719-track; 26NA20060728; 26NA20060728-track; 26NA20060809; 26NA20060809-track; 26NA20060818; 26NA20060818-track; 26NA20060830; 26NA20060830-track; 26NA20060908; 26NA20060908-track; 26NA20060920; 26NA20060920-track; 26NA20061011; 26NA20061011-track; 26NA20061021; 26NA20061021-track; 26NA20061128; 26NA20061128-track; 26NA20061202; 26NA20061202-track; 26NA20061214; 26NA20061214-track; 26NA20061225; 26NA20061225-track; 26NA20070103; 26NA20070103-track; 26NA20070112; 26NA20070112-track; 26NA20070125; 26NA20070125-track; 26NA20070205; 26NA20070205-track; 26NA20070216; 26NA20070216-track; 26NA20070323; 26NA20070323-track; 26NA20070329; 26NA20070329-track; 26NA20070410; 26NA20070410-track; 26NA20070418; 26NA20070418-track; 26NA20070427; 26NA20070427-track; 26NA20070509; 26NA20070509-track; 26NA20070518; 26NA20070518-track; 26NA20070530; 26NA20070530-track; 26NA20070610; 26NA20070610-track; 26NA20070622; 26NA20070622-track; 26NA20070701; 26NA20070701-track; 26NA20070712; 26NA20070712-track; 26NA20070721; 26NA20070721-track; 26NA20070802; 26NA20070802-track; 26NA20070811; 26NA20070811-track; 26NA20070901; 26NA20070901-track; 26NA20070912; 26NA20070912-track; 26NA20070923; 26NA20070923-track; 26NA20071003; 26NA20071003-track; 26NA20071014; 26NA20071014-track; 26NA20071024; 26NA20071024-track; 26NA20071103; 26NA20071103-track; 26NA20071114; 26NA20071114-track; 26NA20071124; 26NA20071124-track; 29HE050; 29HE19980729-track; 29HE20001028; 29HE20001028-track; 29HE20010306; 29HE20010306-track; 29HE20011027; 29HE20011027-track; 29HE20020305; 29HE20020305-track; 29HE20021028; 29HE20021028-track; 29HE20030409; 29HE20030409-track; 29HE20041021; 29HE20041021-track; 316N0154; 316N19810401-track; 316N19810416-track; 316N19810516-track; 316N19810619-track; 316N19810721-track; 316N19810821-track; 316N19810923-track; 316N19821202-track; 316N19821230-track; 316N19830130-track; 316N19831007-track; 316N19840111-track; 316N19871030-track; 316N19871123-track; 316N19871218-track; 316N19880128-track; 316N19940404-track; 316N19941201-track; 316N19950124-track; 316N19950310-track; 316N19950423-track; 316N19950611-track; 316N19950715-track; 316N19950829-track; 316N19951111-track; 316N19951205-track; 316N19961102-track; 316N19971005-track; 318M19780921-track; 318M19780928-track; 318M19790210-track; 318M19790308-track;
    Type: Dataset
    Format: application/zip, 1851 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Bakker, Dorothee C E; Pfeil, Benjamin; Smith, Karl; Hankin, Steven; Olsen, Are; Alin, Simone R; Cosca, Catherine E; Harasawa, Sumiko; Kozyr, Alexander; Nojiri, Yukihiro; O'Brien, Kevin M; Schuster, Ute; Telszewski, Maciej; Tilbrook, Bronte; Wada, Chisato; Akl, John; Barbero, Leticia; Bates, Nicolas R; Boutin, Jacqueline; Bozec, Yann; Cai, Wei-Jun; Castle, Robert D; Chavez, Francisco P; Chen, Lei; Chierici, Melissa; Currie, Kim I; de Baar, Hein J W; Evans, Wiley; Feely, Richard A; Fransson, Agneta; Gao, Zhongyong; Hales, Burke; Hardman-Mountford, Nicolas J; Hoppema, Mario; Huang, Wei-Jen; Hunt, Christopher W; Huss, Betty; Ichikawa, Tadafumi; Johannessen, Truls; Jones, Elizabeth M; Jones, Steve D; Jutterstrøm, Sara; Kitidis, Vassilis; Körtzinger, Arne; Landschützer, Peter; Lauvset, Siv K; Lefèvre, Nathalie; Manke, Ansley; Mathis, Jeremy T; Merlivat, Liliane; Metzl, Nicolas; Murata, Akihiko; Newberger, Timothy; Omar, Abdirahman M; Ono, Tsuneo; Park, Geun-Ha; Paterson, Kristina; Pierrot, Denis; Ríos, Aida F; Sabine, Christopher L; Saito, Shu; Salisbury, Joe; Sarma, Vedula V S S; Schlitzer, Reiner; Sieger, Rainer; Skjelvan, Ingunn; Steinhoff, Tobias; Sullivan, Kevin; Sun, Heng; Sutton, Adrienne; Suzuki, Toru; Sweeney, Colm; Takahashi, Taro; Tjiputra, Jerry; Tsurushima, Nobuo; van Heuven, Steven; Vandemark, Doug; Vlahos, Penny; Wallace, Douglas WR; Wanninkhof, Rik; Watson, Andrew J (2014): An update to the Surface Ocean CO2 Atlas (SOCAT version 2). Earth System Science Data, 6(1), 69-90, https://doi.org/10.5194/essd-6-69-2014
    Publication Date: 2024-05-02
    Description: The Surface Ocean CO2 Atlas (SOCAT), an activity of the international marine carbon research community, provides access to synthesis and gridded fCO2 (fugacity of carbon dioxide) products for the surface oceans. Version 2 of SOCAT is an update of the previous release (version 1) with more data (increased from 6.3 million to 10.1 million surface water fCO2 values) and extended data coverage (from 1968-2007 to 1968-2011). The quality control criteria, while identical in both versions, have been applied more strictly in version 2 than in version 1. The SOCAT website (http://www.socat.info/) has links to quality control comments, metadata, individual data set files, and synthesis and gridded data products. Interactive online tools allow visitors to explore the richness of the data. Applications of SOCAT include process studies, quantification of the ocean carbon sink and its spatial, seasonal, year-to-year and longerterm variation, as well as initialisation or validation of ocean carbon models and coupled climate-carbon models.
    Keywords: SOCAT; Surface Ocean CO2 Atlas Project
    Type: Dataset
    Format: application/zip, 2669 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: This paper is not subject to U.S. copyright. The definitive version was published in Deep Sea Research Part I: Oceanographic Research Papers 74 (2013): 48-63, doi:10.1016/j.dsr.2012.12.005.
    Description: Detection and attribution of hydrographic and biogeochemical changes in the deep ocean are challenging due to the small magnitude of their signals and to limitations in the accuracy of available data. However, there are indications that anthropogenic and climate change signals are starting to manifest at depth. The deep ocean below 2000 m comprises about 50% of the total ocean volume, and changes in the deep ocean should be followed over time to accurately assess the partitioning of anthropogenic carbon dioxide (CO2) between the ocean, terrestrial biosphere, and atmosphere. Here we determine the changes in the interior deep-water inorganic carbon content by a novel means that uses the partial pressure of CO2 measured at 20 °C, pCO2(20), along three meridional transects in the Atlantic and Pacific oceans. These changes are measured on decadal time scales using observations from the World Ocean Circulation Experiment (WOCE)/World Hydrographic Program (WHP) of the 1980s and 1990s and the CLIVAR/CO2 Repeat Hydrography Program of the past decade. The pCO2(20) values show a consistent increase in deep water over the time period. Changes in total dissolved inorganic carbon (DIC) content in the deep interior are not significant or consistent, as most of the signal is below the level of analytical uncertainty. Using an approximate relationship between pCO2(20) and DIC change, we infer DIC changes that are at the margin of detectability. However, when integrated on the basin scale, the increases range from 8–40% of the total specific water column changes over the past several decades. Patterns in chlorofluorocarbons (CFCs), along with output from an ocean model, suggest that the changes in pCO2(20) and DIC are of anthropogenic origin.
    Description: Rik Wanninkhof, Geun-Ha Park, John L. Bullister, and Richard A. Feely appreciate the support from the NOAA Office of Atmospheric and Oceanic Research and the Climate Observation Division. S.C.D. acknowledges support from NOAA Grant NA07OAR4310098. T.T. has been supported by grants from NSF and NOAA.
    Keywords: Ocean ; Carbon dioxide ; CO2 sink ; Anthropogenic carbon ; Deep-water
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 10 (2013): 1983-2000, doi:10.5194/bg-10-1983-2013.
    Description: The globally integrated sea–air anthropogenic carbon dioxide (CO2) flux from 1990 to 2009 is determined from models and data-based approaches as part of the Regional Carbon Cycle Assessment and Processes (RECCAP) project. Numerical methods include ocean inverse models, atmospheric inverse models, and ocean general circulation models with parameterized biogeochemistry (OBGCMs). The median value of different approaches shows good agreement in average uptake. The best estimate of anthropogenic CO2 uptake for the time period based on a compilation of approaches is −2.0 Pg C yr−1. The interannual variability in the sea–air flux is largely driven by large-scale climate re-organizations and is estimated at 0.2 Pg C yr−1 for the two decades with some systematic differences between approaches. The largest differences between approaches are seen in the decadal trends. The trends range from −0.13 (Pg C yr−1) decade−1 to −0.50 (Pg C yr−1) decade−1 for the two decades under investigation. The OBGCMs and the data-based sea–air CO2 flux estimates show appreciably smaller decadal trends than estimates based on changes in carbon inventory suggesting that methods capable of resolving shorter timescales are showing a slowing of the rate of ocean CO2 uptake. RECCAP model outputs for five decades show similar differences in trends between approaches.
    Description: RW, G-HP., RAF were supported in part through the Global Carbon Data Management and Synthesis Project of the NOAA Climate Program Office. NG and HG were supported by funds from ETH Zurich and through the FP7 projects CarboChange (Project reference 264879) and GeoCarbon. CS was supported by grants, NSF/OPP 0944761 and NOAA NA12OAR4310058. SCD acknowledges support through the NOAA Climate Process Team activity, NOAA grant NA07OAR4310098. CH and JS were supported through EU FP7 project COMBINE (grant agreement no. 226520), the Research Council of Norway funded project CarboSeason (185105/S30), the Norwegian Metacenter for Computational Science and Storage Infrastructure (NOTUR and Norstore, “Biogeochemical Earth system modeling” projects nn2980k and ns2980k) and the core project BIOFEEDBACK of the Centre for Climate Dynamics (SKD) within the Bjerknes Centre for Climate Research.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-26
    Description: © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 11 (2014): 709-734, doi:10.5194/bg-11-709-2014.
    Description: Air–sea CO2 fluxes over the Pacific Ocean are known to be characterized by coherent large-scale structures that reflect not only ocean subduction and upwelling patterns, but also the combined effects of wind-driven gas exchange and biology. On the largest scales, a large net CO2 influx into the extratropics is associated with a robust seasonal cycle, and a large net CO2 efflux from the tropics is associated with substantial interannual variability. In this work, we have synthesized estimates of the net air–sea CO2 flux from a variety of products, drawing upon a variety of approaches in three sub-basins of the Pacific Ocean, i.e., the North Pacific extratropics (18–66° N), the tropical Pacific (18° S–18° N), and the South Pacific extratropics (44.5–18° S). These approaches include those based on the measurements of CO2 partial pressure in surface seawater (pCO2sw), inversions of ocean-interior CO2 data, forward ocean biogeochemistry models embedded in the ocean general circulation models (OBGCMs), a model with assimilation of pCO2sw data, and inversions of atmospheric CO2 measurements. Long-term means, interannual variations and mean seasonal variations of the regionally integrated fluxes were compared in each of the sub-basins over the last two decades, spanning the period from 1990 through 2009. A simple average of the long-term mean fluxes obtained with surface water pCO2 diagnostics and those obtained with ocean-interior CO2 inversions are −0.47 ± 0.13 Pg C yr−1 in the North Pacific extratropics, +0.44 ± 0.14 Pg C yr−1 in the tropical Pacific, and −0.37 ± 0.08 Pg C yr−1 in the South Pacific extratropics, where positive fluxes are into the atmosphere. This suggests that approximately half of the CO2 taken up over the North and South Pacific extratropics is released back to the atmosphere from the tropical Pacific. These estimates of the regional fluxes are also supported by the estimates from OBGCMs after adding the riverine CO2 flux, i.e., −0.49 ± 0.02 Pg C yr−1 in the North Pacific extratropics, +0.41 ± 0.05 Pg C yr−1 in the tropical Pacific, and −0.39 ± 0.11 Pg C yr−1 in the South Pacific extratropics. The estimates from the atmospheric CO2 inversions show large variations amongst different inversion systems, but their median fluxes are consistent with the estimates from climatological pCO2sw data and pCO2sw diagnostics. In the South Pacific extratropics, where CO2 variations in the surface and ocean interior are severely undersampled, the difference in the air–sea CO2 flux estimates between the diagnostic models and ocean-interior CO2 inversions is larger (0.18 Pg C yr−1). The range of estimates from forward OBGCMs is also large (−0.19 to −0.72 Pg C yr−1). Regarding interannual variability of air–sea CO2 fluxes, positive and negative anomalies are evident in the tropical Pacific during the cold and warm events of the El Niño–Southern Oscillation in the estimates from pCO2sw diagnostic models and from OBGCMs. They are consistent in phase with the Southern Oscillation Index, but the peak-to-peak amplitudes tend to be higher in OBGCMs (0.40 ± 0.09 Pg C yr−1) than in the diagnostic models (0.27 ± 0.07 Pg C yr−1).
    Description: M. Ishii acknowledges the Meteorological Research Institute’s priority research fund for ocean carbon cycle changes, JSPS Grant-in-Aid for Scientific Research (B) No. 22310017, and MEXT Grant-in-Aid for Scientific Research on Innovative Areas No. 24121003. Support for K. B. Rodgers came under awards NA17RJ2612 and NA08OAR4320752, and support for K. B. Rodgers and R. A. Feely from the NOAA Office of Oceanic and Atmospheric Research (OAR) through the office of Climate Observations (OCO), as well as by funds from NASA’s Research Opportunities in Space and Earth Sciences through award #NNX09AI13G. SMF’s contributions were funded through the NIWA National Centre for Atmosphere’s core research funding. S. C. Doney and I. Lima acknowledge support from US National Science Foundation award AGS-1048827. E. T. Buitenhuis acknowledges support from the EU (CarboChange, contract 264879). A. Lenton acknowledges support from the Australian Climate Change Science Program. T. Takahashi is supported by grants from the NOAA (NA08OAR4320754) and the Comer Science and Education Foundation (CSEF CP70).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-26
    Description: © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Earth System Science Data 6 (2014): 235-263, doi:10.5194/essd-6-235-2014.
    Description: Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates, consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil-fuel combustion and cement production (EFF) are based on energy statistics, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated for the first time in this budget with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2 and land cover change (some including nitrogen–carbon interactions). All uncertainties are reported as ±1σ, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2003–2012), EFF was 8.6 ± 0.4 GtC yr−1, ELUC 0.9 ± 0.5 GtC yr−1, GATM 4.3 ± 0.1 GtC yr−1, SOCEAN 2.5 ± 0.5 GtC yr−1, and SLAND 2.8 ± 0.8 GtC yr−1. For year 2012 alone, EFF grew to 9.7 ± 0.5 GtC yr−1, 2.2% above 2011, reflecting a continued growing trend in these emissions, GATM was 5.1 ± 0.2 GtC yr−1, SOCEAN was 2.9 ± 0.5 GtC yr−1, and assuming an ELUC of 1.0 ± 0.5 GtC yr−1 (based on the 2001–2010 average), SLAND was 2.7 ± 0.9 GtC yr−1. GATM was high in 2012 compared to the 2003–2012 average, almost entirely reflecting the high EFF. The global atmospheric CO2 concentration reached 392.52 ± 0.10 ppm averaged over 2012. We estimate that EFF will increase by 2.1% (1.1–3.1%) to 9.9 ± 0.5 GtC in 2013, 61% above emissions in 1990, based on projections of world gross domestic product and recent changes in the carbon intensity of the economy. With this projection, cumulative emissions of CO2 will reach about 535 ± 55 GtC for 1870–2013, about 70% from EFF (390 ± 20 GtC) and 30% from ELUC (145 ± 50 GtC).
    Description: We thank the many researchers and funding agencies responsible for the collection and quality control of the data included in SOCAT, and the support of the International Ocean Carbon Coordination Project (IOCCP), the Surface Ocean Lower Atmosphere Study (SOLAS), and the Integrated Marine Biogeochemistry and Ecosystem Research program (IMBER). The UK Natural Environment Research Council (NERC) provided funding to C. Le Quéré, R. Moriarty and the GCP though their International Opportunities Fund specifically to support this publication (project NE/103002X/1). R. J. Andres and T. A. Boden were supported by the US Department of Energy, Office of Science, Biological and Environmental Research (BER) programs under US Department of Energy contract DE-AC05- 00OR22725. G. P. Peters and R. M. Andrews were supported by the Norwegian Research Council (221355). A. Arneth, A. Omar, C. Le Quéré, J. Schwinger, P. Ciais, P. Friedlingstein, P. Regnier, J. Segschneider, S. Sitch and S. Zaehle were supported by the EU FP7 for funding through projects GEOCarbon (283080), COMBINE (226520), CARBOCHANGE (264879), EMBRACE (GA282672), and LUC4C (GA603542). A. Harper was supported by the NERC Joint Weather and Climate Research Programme. A. K. Jain was supported by the US National Science Foundation (NSF AGS 12-43071) the US Department of Energy, Office of Science and BER programs (DOE DE-SC0006706) and NASA LCLUC program (NASA NNX14AD94G). B. D. Stocker was supported by the Swiss National Science Foundation. A. Wiltshire was supported by the Joint UK DECC/Defra Met Office Hadley Centre Climate Programme (GA01101). E. Kato was supported by the Environment Research and Technology Development Fund (S-10) of the Ministry of Environment of Japan. J. G. Canadell and M. R. Raupach were supported by the Australian Climate Change Science Program. J. I. House was supported by a Leverhulme Research Fellowship. S. C. Doney was supported by the US National Science Foundation (NSF AGS-1048827).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-03-26
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...