GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (3)
  • OceanRep  (42)
  • 1
    Publication Date: 2017-01-31
    Repository Name: EPIC Alfred Wegener Institut
    Type: Miscellaneous , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Leibniz-Institut für Ostseeforschung Warnemünde | Rostock, Germany
    In:  http://aquaticcommons.org/id/eprint/26030 | 20978 | 2018-10-21 01:18:53 | 26030 | Leibniz-Institut für Ostseeforschung Warnemünde
    Publication Date: 2021-07-24
    Description: ENGLISH ABSTRACT: The article summarizes the hydrographic-hydrochemical conditions in the western and central Baltic Sea in 2017. Based on meteorological conditions, the horizontal and vertical distribution of temperature, salinity, oxygen/hydrogen sulphide and nutrients are described on a seasonal scale. For the southern Baltic Sea area, the “cold sum” of the air temperature of 31.7 Kd in Warnemünde amounted to a mild winter in 2014/15 and ranks as 15th warmest winter since the beginning of the record in 1948. The summer “heat sum” of 159.5 Kd ranks on 28th position of the warmest summers over the past 70 years and is slightly above the long-term average of 153.4 Kd. Based on satellite derived Sea Surface Temperature (SST) 2017 was the eleventh-warmest year since 1990 and with 0.24 K slightly above the long-term SST average. March, April and October - December contributed to the average by their positive anomalies. July and August were characterized by negative anomalies. The anomalies reached maximum values of +2 K and -3 K. The situation in the deep basins of the Baltic Sea was mainly coined by beginning stagnation at bottom-near water depths of the eastern Gotland Basin and ongoing ventilation of the upper part 5 of the deep-water above 150 m as a consequence of weak inflows. For the first time within this phase of intensified inflow activity, starting in 2014, the ventilation of the Farö Deep at the Northern Central Basin was registered at the beginning of the year. In the course of 2017 two weak inflows showing total volumes of 210 km^³ (February) and 188 km^³ (October) were registered. In conclusion, the impact of the observed phase of intensified water exchange processes with subsequent consequences for the biogeochemical cycles is weakening.GERMAN ABSTRACT: Die Arbeit beschreibt die hydrographisch-hydrochemischen Bedingungen in der westlichen und zentralen Ostsee für das Jahr 2017. Basierend auf den meteorologischen Verhältnissen werden die horizontalen und vertikalen Verteilungsmuster von Temperatur, Salzgehalt, Sauerstoff/ Schwefelwasserstoff und Nährstoffen mit saisonaler Auflösung dargestellt. Für den südlichen Ostseeraum ergab sich eine Kältesumme der Lufttemperatur an der Station Warnemünde von 31,7 Kd. Im Vergleich belegt der Winter 2016/17 den 15. Platz der wärmsten Winter seit Beginn der Aufzeichnungen im Jahr 1948 und wird als mild klassifiziert. Mit einer Wärmesumme von 159,5 Kd rangiert der Sommer im Mittelfeld der 70jährigen Datenreihe und reiht sich auf Platz 28 der wärmsten Sommer ein. Das Langzeitmittel liegt bei 153,4 Kd. Auf der Grundlage von satellitengestützten Meeresoberflächentemperaturen (SST) war 2017 das elft- wärmste Jahr seit 1990 und mit 0,24 K etwas über dem langfristigen SST-Mittel. März, April und Oktober - Dezember trugen durch ihre positiven Anomalien zum Durchschnitt bei. Juli und August waren durch negative Anomalien gekennzeichnet. Die Anomalien erreichten Höchstwerte von +2 K und -3 K. Die Situation in den Tiefenbecken der Ostsee war im Wesentlichen geprägt durch bodennah einsetzende Stagnation im östlichen Gotland Becken und Belüftung der mittleren Wassersäule oberhalb 150 m im Zuge kleinerer Einströme. Zu Jahresbeginn wurde das im nördlichen Zentralbecken gelegene Farö Tief erstmals innerhalb der aktuellen Einstromphase belüftet. Im Jahresverlauf 2017 wurden zwei weitere schwache Einströme mit Volumina zwischen 210 km³ und 188 km³ im Februar sowie Oktober registriert. Zusammenfassend kann gesagt werden, dass die Auswirkungen der seit 2014 beobachten Phase von verstärkten Wasseraustauschprozessen mit entsprechenden Konsequenzen für die biogeochemischen Kreisläufe abklingen.
    Keywords: Environment ; Oceanography ; Western Baltic Sea ; Central Baltic Sea ; temperature ; salinity ; oxygen/hydrogen sulphide ; nutrients ; Baltic Sea Monitoring Programme
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Format: 97
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-04-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Institut für Ostseeforschung Warnemünde
    In:  Institut für Ostseeforschung Warnemünde, Rostock, 18 pp.
    Publication Date: 2015-02-17
    Description: Natürliche Ursachen der Variabilität biogeochemischer Charakteristika im Nordostatlantik am Beispiel der Partikelflüsse im Madeira Becken
    Type: Report , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-09-22
    Description: Hydrographic surveys in three consecutive seasons in the Irminger Sea in 2001/2002 have revealed six physical regimes (zones) in which different surface mixing and spring re-stratification processes dominate. They are the South Irminger Current, the North Irminger Current, the Central Irminger Sea, the Polar-origin East Greenland Current, the Atlantic-origin East Greenland Current and the Reykjanes Ridge. The variations in restratification processes in particular have significant implications for the timing of shallow spring mixed layer development and therefore the timing and strength of the spring bloom. The relative roles of heat and freshwater in controlling re-stratification are examined for each hydrographic zone, and it is shown that the simplest concept of solar warming generating spring stratification is appropriate for the Irminger Current and the central Irminger Sea. However in the East Greenland Current and the Reykjanes Ridge zones, the springtime arrival of fresh or saline water at the surface dominates re-stratification and generates the earliest and strongest spring blooms of the region. In the cool fresh centre of the Irminger Sea the relatively low chlorophyll-a throughout the year cannot be wholly explained by stratification or nutrient concentrations. Details of the annual cycle in temperature, salinity, chlorophyll-a and nutrients are presented for each hydrographic zone
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    AGU
    In:  Journal of Geophysical Research: Biogeosciences, 120 (2). pp. 237-245.
    Publication Date: 2020-07-23
    Description: Understanding the development of primary production is essential for projections of the global carbon cycle in the context of climate change. A chlorophyll a hindcast that serves as a primary production indicator was obtained by fitting in situ measurements of nitrate, chlorophyll a, and temperature. The resulting fitting functions were adapted to a modeled temperature field. The method was applied to observations from the Madeira Basin, in the northeastern part of the oligotrophic North Atlantic Subtropical Gyre and yielded a chlorophyll a field from 1989 to 2008 with a monthly resolution validated with remotely measured surface chlorophyll a data by SeaWiFS. The chlorophyll a hindcast determined with our method resolved the seasonal and interannual variability in the phytoplankton biomass of the euphotic zone as well as the deep chlorophyll maximum. Moreover, it will allow estimation of carbon uptake over long time scales.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 334 . pp. 47-61.
    Publication Date: 2015-09-22
    Description: Physical and chemical properties of the water column, along with meteorological conditions were examined for their relationship with phytoplankton biomass in the Irminger Sea during late autumn and early winter. Data were collected during 2 cruises to the region in November and December 2001 and November 2002. Phytoplankton biomass was approximated by (chl a) concentrations within the water column. When examined during autumn and winter alone, the Irminger Sea was suitably described as one biogeochemical region responding to varying meteorological forcing. Hydrographic differences within the region were not observed to have a significant effect on phytoplankton growth during this period. Strong correlations with latitude were seen in chl a concentrations, physical conditions (including mixed layer depth) and meteorological forcing (including net heat flux). Variability in autumn/winter phytoplankton growth conditions appears to be driven by light limitation modulated by meteorological forcing. The temporal and spatial scales of locations sampled in 2001 represent a progression in the physical and biological conditions from late autumn to early winter. Along this ‘virtual transect’, a baseline value of approximately 0.1 mg m–3 is seen in the mean chl a concentrations within the mixed layer. We postulate that convection provides a mechanism for reduction of net losses of phytoplankton, by helping to keep phytoplankton within the mixed layer. Under such conditions, a deeper and therefore more accurate estimation of the critical depth would be valid. Evidence of the extended maintenance of phytoplankton within the mixed layer is presented in the form of the relative dominances of different phytoplankton groups.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-09-22
    Description: The upper water column in the Irminger Sea is characterized by cold fresh arctic and subarctic waters and warm saline North Atlantic waters. In this study the local physical and meteorological preconditioning of the phytoplankton development over an annual cycle in the upper water column in four physical zones of the Irminger Sea is investigated. Data from four cruises of the UK's Marine Productivity programme are combined with results from a coupled biological–physical nitrogen–phytoplankton–zooplankton–detritus model run using realistic forcing. The observations and model predictions are compared and analyzed to identify the key parameters and processes which determine the observed heterogeneity in biological production in the Irminger Sea. The simulations show differences in the onset of the bloom, in the time of the occurrence of the maximum phytoplankton biomass and in the length of the bloom between the zones. The longest phytoplankton bloom of 90 days duration was predicted for the East Greenland Current of Atlantic origin zone. In contrast, for the Central Irminger Sea zone a phytoplankton bloom with a start at the beginning of May and the shortest duration of only 70 days was simulated. The latest onset of the phytoplankton bloom in mid May and the latest occurrence of the maximum biomass (end of July) were predicted for the Northern Irminger Current zone. Here the bloom lasted for 80 days. In contrast the phytoplankton bloom in the Southern Irminger Current zone started at the same time as in Central Irminger Sea, but peaked end of June and lasted for 80 days. For all four zones relatively low daily (0.3–0.5 g C m− 2d− 1) and annual primary production was simulated, ranging between 35.6 g C m− 2y− 1 in the East Greenland Current of Atlantic origin zone and 45.6 g C m− 2y− 1 in the Northern Irminger Current zone. The model successfully simulated the observed regional and spatial differences in terms of the maximum depth of winter mixing, the onset of stratification and the development of the seasonal thermocline, and the differences in biological characteristics between the zones. The initial properties of the water column and the seasonal cycle of physical and meteorological forcing in each of the zones are responsible for the observed differences during the Marine Productivity cruises. The timing of the transition from mixing to stratification regime, and the different prevailing light levels in each zone are identified as the crucial processes/parameters for the understanding of the dynamics of the pelagic ecosystem in the Irminger Sea.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-09-22
    Description: The relationship between physical properties of the water column and spatial patchiness of phytoplankton spring bloom development on the Greenland shelf edge and in the Irminger Sea was investigated using data collected during a spring cruise (April and May 2002). The observations confirm a strong relationship between the onset and stage of bloom development and the stratification induced by freshwater input to the surface layer in the shelf region. Interestingly, at the shelf, in the region influenced by melting of the seasonal ice-cover, the vertical distribution of chlorophyll a showed a subsurface maximum at ca. 25 m depth at several stations. Since nutrients were not exhausted at these stations, such a pattern does not conform to the general picture of a spring bloom. In contrast, in the open ocean part of the Irminger Sea pre-bloom conditions and a retarded development of the phytoplankton population were observed with low, more uniform distribution of chlorophyll a. The nitrate drawdown was estimated at between 16.5 and 270 µm m–2 (mean 108.6 ± 82.2 µm m–2) and the new primary production was estimated to be between 1.3 and 21.4 g C m–2 (8.6 ± 6.5 g C m–2), corresponding to 0.42 g C m–2 d–1. The phytoplankton community in the melting ice zone consisted of Phaeocystis sp., small flagellates (〈 4 µm) and picoplankton, while diatoms were less abundant. Phaeocystis sp. contributed up to 15 g C m–2 to the carbon biomass (70% of total carbon measured), whereas the contribution of diatoms and flagellates to carbon biomass was relatively low, with up to 1.2 g C m–2 (5.7%) and up to 2.5 g C m–2 (11.7%), respectively. On the shelf the bloom starts at the very beginning of stabilisation (elevated N2 values) which results solely from the release of meltwater. The locally restricted water stability leads to a patchy phytoplankton distribution in the Irminger Sea.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-09-22
    Description: Long-term observations of the deep ocean particle flux from three sites in the northeast Atlantic (33 degrees N, 22 degrees W; 47 degrees N, 20 degrees W; 54 degrees N, 20 degrees W) provide the basis for comparison and characterization of the biogeochemical provinces in terms of sedimentation pattern. Deep ocean particle flux data (2000 in) for fluxes of total mass and the flux composition are presented and compared to published sediment trap data from this area to consider regional-scale variations in the quantity and composition of settling material. The observations show that in the northeast Atlantic gradient of decreasing mass flux from North to South, exists consistent with known changes of biological productivity in surface waters. This gradient is associated with similar trends in opal and particulate organic carbon, whereas calcium carbonate shows trend in the opposite direction. The changes in the composition of the settling material found along the transect are indicating that the calcium carbonate flux is critical in removing organic matter from the upper ocean to the deeper sink. Its role declines from the subtropical ocean (60-80% of the particle flux) towards North (〈 40%) reflecting the decreasing importance of coccolithophorid/foraminiferal blooms for particle flux from the subtropical to the subpolar North Atlantic. In contrast, the role of biogenic silica (opal) in regard to the ballasting effect increases towards North. The northern sites have much higher percentage of biogenic silica than the sites in the South, because of the deep winter mixing and the seasonality of phytoplankton dominated by diatom blooms during spring and summer. The comparison of the seasonal pattern of particle flux with the seasonal pattern of surface chlorophyll a concentrations from SeaWiFS together with the similarity of the pattern observed in calcium carbonate and opal leads to the conclusion that the particle flux at two positions (33 degrees N, 22 degrees W; 47 degrees N, 20 degrees W) is fast and directly coupled to the phytoplankton dynamics in the overlying euphotic zone.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...