GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Language
  • 1
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Seamounts. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (553 pages)
    Edition: 1st ed.
    ISBN: 9780470691267
    Series Statement: Fish and Aquatic Resources Series
    DDC: 577.7
    Language: English
    Note: Seamounts: Ecology, Fisheries & -- Conservation -- Contents -- List of Contributors -- Series Editors Foreword -- Preface -- Publisher's Acknowledgement -- Acknowledgements -- Part I Introduction and Characterization of Seamounts -- 1 Seamount characteristics -- 2 How many seamounts are there and where are they located? -- 3 A history of seamount research -- Part II Biophysical coupling on seamounts -- 4 Physical processes and seamount productivity -- 5 Seamount plankton dynamics -- 6 Midwater fish assemblages and seamounts -- Part III Biology and ecology of seamount organisms -- 7 Seamount benthos -- 8 Corals on seamounts -- 9 Seamount fishes: ecology and life histories -- 10 Fish visitors to seamounts -- Section A: Tunas and billfish at seamounts -- Section B: Aggregations of large pelagic sharks above seamounts -- 11 Seamounts and cephalopods -- 12 Air-breathing visitors to seamounts -- Section A: Marine mammals -- Section B: Sea turtles -- Section C: Importance of seamounts to seabirds -- Part IV Synoptic views of seamounts -- 13 Biogeography and biodiversity of seamounts -- 14 Raiding the larder: a quantitative evaluation framework and trophic signature for seamount food webs -- 15 Modelling seamount ecosystems and their fisheries -- Part V Exploitation, management and conservation -- 16 Small-scale fishing on seamounts -- 17 Large-scale distant-water trawl fisheries on seamounts -- 18 Catches from world seamount fisheries -- 19 Impacts of fisheries on seamounts -- 20 Management and conservation of seamounts -- 21 The depths of ignorance: an ecosystem evaluation framework for seamount ecology, fisheries and conservation -- Glossary -- Subject Index -- Author index -- Species index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-05-09
    Description: Anthropogenic litter is present in all marine habitats, from beaches to the most remote points in the oceans. On the seafloor, marine litter, particularly plastic, can accumulate in high densities with deleterious consequences for its inhabitants. Yet, because of the high cost involved with sampling the seafloor, no large-scale assessment of distribution patterns was available to date. Here, we present data on litter distribution and density collected during 588 video and trawl surveys across 32 sites in European waters. We found litter to be present in the deepest areas and at locations as remote from land as the Charlie-Gibbs Fracture Zone across the Mid-Atlantic Ridge. The highest litter density occurs in submarine canyons, whilst the lowest density can be found on continental shelves and on ocean ridges. Plastic was the most prevalent litter item found on the seafloor. Litter from fishing activities (derelict fishing lines and nets) was particularly common on seamounts, banks, mounds and ocean ridges. Our results highlight the extent of the problem and the need for action to prevent increasing accumulation of litter in marine environments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-02-06
    Description: We have developed a global biogeographic classification of the mesopelagic zone to reflect the regional scales over which the ocean interior varies in terms of biodiversity and function. An integrated approach was necessary, as global gaps in information and variable sampling methods preclude strictly statistical approaches. A panel combining expertise in oceanography, geospatial mapping, and deep-sea biology convened to collate expert opinion on the distributional patterns of pelagic fauna relative to environmental proxies (temperature, salinity, and dissolved oxygen at mesopelagic depths). An iterative Delphi Method integrating additional biological and physical data was used to classify biogeographic ecoregions and to identify the location of ecoregion boundaries or inter-regions gradients. We define 33 global mesopelagic ecoregions. Of these, 20 are oceanic while 13 are ‘distant neritic.’ While each is driven by a complex of controlling factors, the putative primary driver of each ecoregion was identified. While work remains to be done to produce a comprehensive and robust mesopelagic biogeography (i.e., reflecting temporal variation), we believe that the classification set forth in this study will prove to be a useful and timely input to policy planning and management for conservation of deep-pelagic marine resources. In particular, it gives an indication of the spatial scale at which faunal communities are expected to be broadly similar in composition, and hence can inform application of ecosystem-based management approaches, marine spatial planning and the distribution and spacing of networks of representative protected areas
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-02-06
    Description: Highlights • Deep-sea mineral exploration and exploitation licenses have been issued recently. • Mining will modify the abiotic and biotic environment. • At directly mined sites, species are removed and cannot resist disturbance. • Recovery is highly variable in distinct ecosystems and among benthic taxa. • Community changes may persist over geological time-scales at directly mined sites. Abstract With increasing demand for mineral resources, extraction of polymetallic sulphides at hydrothermal vents, cobalt-rich ferromanganese crusts at seamounts, and polymetallic nodules on abyssal plains may be imminent. Here, we shortly introduce ecosystem characteristics of mining areas, report on recent mining developments, and identify potential stress and disturbances created by mining. We analyze species’ potential resistance to future mining and perform meta-analyses on population density and diversity recovery after disturbances most similar to mining: volcanic eruptions at vents, fisheries on seamounts, and experiments that mimic nodule mining on abyssal plains. We report wide variation in recovery rates among taxa, size, and mobility of fauna. While densities and diversities of some taxa can recover to or even exceed pre-disturbance levels, community composition remains affected after decades. The loss of hard substrata or alteration of substrata composition may cause substantial community shifts that persist over geological timescales at mined sites.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-09-23
    Description: As coastal fisheries around the world have collapsed, industrial fishing has spread seaward and deeper in pursuit of the last economically attractive concentrations of fishable biomass. For a seafood-hungry world depending on the oceans' ecosystem services, it is crucial to know whether deep-sea fisheries can be sustainable. The deep sea is by far the largest but least productive part of the oceans, although in very limited places fish biomass can be very high. Most deep-sea fishes have life histories giving them far less population resilience/productivity than shallow-water fishes, and could be fished sustainably only at very low catch rates if population resilience were the sole consideration. But like old-growth trees and great whales, their biomass makes them tempting targets while their low productivity creates strong economic incentive to liquidate their populations rather than exploiting them sustainably (Clark's Law). Many deep-sea fisheries use bottom trawls, which often have high impacts on nontarget fishes (e.g., sharks) and invertebrates (e.g., corals), and can often proceed only because they receive massive government subsidies. The combination of very low target population productivity, nonselective fishing gear, economics that favor population liquidation and a very weak regulatory regime makes deep-sea fisheries unsustainable with very few exceptions. Rather, deep-sea fisheries more closely resemble mining operations that serially eliminate fishable populations and move on. Instead of mining fish from the least-suitable places on Earth, an ecologically and economically preferable strategy would be rebuilding and sustainably fishing resilient populations in the most suitable places, namely shallower and more productive marine ecosystems that are closer to markets. Highlights ► Industrial fishing has spread seaward and deeper in pursuit of wild fish biomass. ► Low productivity deep-sea fishes tempt fishermen to overexploit their populations. ► Azores hook-and-line black scabbardfish is a rare, apparently sustainable exception. ► Subsidies for trawling in poorly managed high seas areas incentivize overfishing. ► Recovering and fishing productive shelf fish populations is much more sustainable.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-01-31
    Description: The diversity of life in the sea is critical to the health of ocean ecosystems that support living resources and therefore essential to the economic, nutritional, recreational, and health needs of billions of people. Yet there is evidence that the biodiversity of many marine habitats is being altered in response to a changing climate and human activity. Understanding this change, and forecasting where changes are likely to occur, requires monitoring of organism diversity, distribution, abundance, and health. It requires a minimum of measurements including productivity and ecosystem function, species composition, allelic diversity, and genetic expression. These observations need to be complemented with metrics of environmental change and socio-economic drivers. However, existing global ocean observing infrastructure and programs often do not explicitly consider observations of marine biodiversity and associated processes. Much effort has focused on physical, chemical and some biogeochemical measurements. Broad partnerships, shared approaches, and best practices are now being organized to implement an integrated observing system that serves information to resource managers and decision-makers, scientists and educators, from local to global scales. This integrated observing system of ocean life is now possible due to recent developments among satellite, airborne, and in situ sensors in conjunction with increases in information system capability and capacity, along with an improved understanding of marine processes represented in new physical, biogeochemical, and biological models.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-07
    Description: Ocean ecosystems are at the forefront of the climate and biodiversity crises, yet we lack a unified approach to assess their state and inform sustainable policies. This blueprint is designed around research capabilities and cross-sectoral partnerships. We highlight priorities including integrating basin-scale observation, modelling and genomic approaches to understand Atlantic oceanography and ecosystem connectivity; improving ecosystem mapping; identifying potential tipping points in deep and open ocean ecosystems; understanding compound impacts of multiple stressors including warming, acidification and deoxygenation; enhancing spatial and temporal management and protection. We argue that these goals are best achieved through partnerships with policy-makers and community stakeholders, and promoting research groups from the South Atlantic through investment and engagement. Given the high costs of such research (€800k to €1.7M per expedition and €30–40M for a basin-scale programme), international cooperation and funding are integral to supporting science-led policies to conserve ocean ecosystems that transcend jurisdictional borders.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-02-07
    Description: A comprehensive understanding of the deep-sea environment and mining’s likely impacts is necessary to assess whether and under what conditions deep-seabed mining operations comply with the International Seabed Authority’s obligations to prevent ‘serious harm’ and ensure the ‘effective protection of the marine environment from harmful effects’ in accordance with the United Nations Convention on the Law of the Sea. A synthesis of the peer-reviewed literature and consultations with deep-seabed mining stakeholders revealed that, despite an increase in deep-sea research, there are few categories of publicly available scientific knowledge comprehensive enough to enable evidence-based decision-making regarding environmental management, including whether to proceed with mining in regions where exploration contracts have been granted by the International Seabed Authority. Further information on deep-sea environmental baselines and mining impacts is critical for this emerging industry. Closing the scientific gaps related to deep-seabed mining is a monumental task that is essential to fulfilling the overarching obligation to prevent serious harm and ensure effective protection, and will require clear direction, substantial resources, and robust coordination and collaboration. Based on the information gathered, we propose a potential high-level road map of activities that could stimulate a much-needed discussion on the steps that should be taken to close key scientific gaps before any exploitation is considered. These steps include the definition of environmental goals and objectives, the establishment of an international research agenda to generate new deep-sea environmental, biological, and ecological information, and the synthesis of data that already exist.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Perán Miñarro, Antonio David; Pham, Christopher Kim; Amorim, Patricia; Cardigos, Frederico; Tempera, Fernando; Morato, Telmo (2016): Seafloor characteristics in the Azores region (North-Atlantic). Frontiers in Marine Science, 3, 4 pp, https://doi.org/10.3389/fmars.2016.00204
    Publication Date: 2023-02-24
    Description: Current European legislation such as the Marine Strategy Framework Directive (MSFD; 2008/56/EC) has highlighted the need for accurate maps on the geomorphology of Europe's maritime territory. Such information is notably essential for the production of habitat maps and cumulative impact assessments of human activities (Halpern et al., 2008) necessary for marine spatial planning initiatives (Gilliland and Laffoley, 2008) and assessments of the representativity/sufficiency of marine protected areas networks like Natura 2000. Broadscale satellite bathymetry presently allows the identification of all prominent geomorphic structures present on the seafloor with a high grade of accuracy. However, these datasets and maps still need to be more widely disseminated in the scientific community. In this contribution, we provide an inventory of some important datasets related to the physical characteristics of the seafloor surrounding the Azores Archipelago. The objective is to ensure that our compilation is readily available for any researchers interested in developing species distribution models, or for the management and conservation of natural resources in the region.
    Keywords: ATLAS; A Trans-Atlantic assessment and deep-water ecosystem-based spatial management plan for Europe; azores; Azores; File content; File size; Uniform resource locator/link to file
    Type: Dataset
    Format: text/tab-separated-values, 15 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Amorim, Patricia; Perán, António D; Pham, Christopher Kim; Juliano, Manuela; Cardigos, Frederico; Tempera, Fernando; Morato, Telmo (2017): Overview of the Ocean Climatology and Its Variability in the Azores Region of the North Atlantic Including Environmental Characteristics at the Seabed. Frontiers in Marine Science, 4(56), 1-16, https://doi.org/10.3389/fmars.2017.00056
    Publication Date: 2023-02-24
    Description: Obtaining a comprehensive knowledge of the spatial and temporal variations of the environmental factors characterizing the Azores region is essential for conservation and management purposes. Although many studies are available for the region, there is a need for a general overview of the best available information. Here, we assembled a comprehensive collection of environmental data for this region. Data sources used in this study included remote sensing oceanographic data for 2003?2013 (sea surface temperature, chlorophyll-a concentration, particulate inorganic carbon (PIC), and particulate organic carbon (POC)), derived oceanographic data (primary productivity and North Atlantic oscillation index) for 2003?2013, and in situ data (temperature, salinity, oxygen, phosphate, nitrate and silicate) obtained from the World Ocean Atlas 2013.
    Keywords: ATLAS; A Trans-Atlantic assessment and deep-water ecosystem-based spatial management plan for Europe; azores; Azores; File content; File size; Uniform resource locator/link to file
    Type: Dataset
    Format: text/tab-separated-values, 18 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...