GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Pachiadaki, Maria G; Lykousis, Vasilios; Stefanou, Euripides G; Kormas, Konstantinos A (2010): Prokaryotic community structure and diversity in the sediments of an active submarine mud volcano (Kazan mud volcano, East Mediterranean Sea). FEMS Microbiology Ecology, 72(3), 429-444, https://doi.org/10.1111/j.1574-6941.2010.00857.x
    Publication Date: 2023-05-12
    Description: We investigated 16S rRNA gene diversity at a high sediment depth resolution (every 5 cm, top 30 cm) in an active site of the Kazan mud volcano, East Mediterranean Sea. A total of 242 archaeal and 374 bacterial clones were analysed, which were attributed to 38 and 205 unique phylotypes, respectively (〉=98% similarity). Most of the archaeal phylotypes were related to ANME-1, -2 and -3 members originating from habitats where anaerobic oxidation of methane (AOM) occurs, although they occurred in sediment layers with no apparent AOM (below the sulphate depletion depth). Proteobacteria were the most abundant and diverse bacterial group, with the Gammaproteobacteria dominating in most sediment layers and these were related to phylotypes involved in methane cycling. The Deltaproteobacteria included several of the sulphate-reducers related to AOM. The rest of the bacterial phylotypes belonged to 15 known phyla and three unaffiliated groups, with representatives from similar habitats. Diversity index H was in the range 0.56-1.73 and 1.47-3.82 for Archaea and Bacteria, respectively, revealing different depth patterns for the two groups. At 15 and 20 cm below the sea floor, the prokaryotic communities were highly similar, hosting AOM-specific Archaea and Bacteria. Our study revealed different dominant phyla in proximate sediment layers.
    Keywords: CDRILL; Core drilling; Eastern Mediterranean Sea; HERMIONE; Hotspot Ecosystem Research and Mans Impact On European Seas; Kazan-MV
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-05-12
    Keywords: CDRILL; Core drilling; DEPTH, sediment/rock; Eastern Mediterranean Sea; Equitability; HERMIONE; Hotspot Ecosystem Research and Mans Impact On European Seas; Kazan-MV; Number of individuals; Phylotype number; Shannon Diversity Index
    Type: Dataset
    Format: text/tab-separated-values, 28 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-09-23
    Keywords: Acidobacteria; Actinobacteria; Alphaproteobacteria; Anaerobic methanotrophic archaea-1; Anaerobic methanotrophic archaea-2a,b; Anaerobic methanotrophic archaea-2c; Anaerobic methanotrophic archaea-3; Archaea, GEG; Archaea, GoM Arc I; Archaea, MBG-B; Archaea, MBG-D; Bacteria, JS1; Bacteria, OP11; Bacteria, OP8; Bacteria, TG1; Bacteria, unaffiliated; Bacteria, WS2; Bacteria, WS3; Bacteroidetes; Betaproteobacteria; CDRILL; Chlorobi; Chloroflexi; Core drilling; Deferribacteres; Delta-Proteobacteria; DEPTH, sediment/rock; Eastern Mediterranean Sea; Epsilonproteobacteria; Firmicutes; Fusobacteria; Gammaproteobacteria; HERMIONE; Hotspot Ecosystem Research and Mans Impact On European Seas; Kazan-MV; Methanomicrobiales; Methanosaeta related Methanosarcinales; Methanosarcinales, unaffiliated; Number of clones; Planctomycetes; Spirochaetes
    Type: Dataset
    Format: text/tab-separated-values, 238 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2014. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 129 (2016): 213-222, doi:10.1016/j.dsr2.2014.10.020.
    Description: Obtaining an accurate picture of microbial processes occurring in situ is essential for our understanding of marine biogeochemical cycles of global importance. Water samples are typically collected at depth and returned to the sea surface for processing and downstream experiments. Metatranscriptome analysis is one powerful approach for investigating metabolic activities of microorganisms in their habitat and which can be informative for determining responses of microbiota to disturbances such as the Deepwater Horizon oil spill. For studies of microbial processes occurring in the deep sea, however, sample handling, pressure, and other changes during sample recovery can subject microorganisms to physiological changes that alter the expression profile of labile messenger RNA. Here we report a comparison of gene expression profiles for whole microbial communities in a bathypelagic water column sample collected in the Eastern Mediterranean Sea using Niskin bottle sample collection and a new water column sampler for studies of marine microbial ecology, the Microbial Sampler – In Situ Incubation Device (MS-SID). For some taxa, gene expression profiles from samples collected and preserved 33 in situ were significantly different from potentially more stressful Niskin sampling and 34 preservation on deck. Some categories of transcribed genes also appear to be affected by sample 35 handling more than others. This suggests that for future studies of marine microbial ecology, 36 particularly targeting deep sea samples, an in situ sample collection and preservation approach 37 should be considered.
    Description: This research was funded by NSF OCE-1061774 to VE and CT, NSF DBI-0424599 to CT and NSF OCE-0849578 to VE and colleague J. Bernhard. Cruise participation was partially supported by Deutsche Forschungsgemeinschaft (DFG) grant STO414/10-1 to T. Stoeck.
    Keywords: Metatranscriptomics ; Microbial sampler ; In Situ icubation device ; Pressure effects
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 10 (2015): e0124505, doi:10.1371/journal.pone.0124505.
    Description: Oceanic protist grazing at mesopelagic and bathypelagic depths, and their subsequent effects on trophic links between eukaryotes and prokaryotes, are not well constrained. Recent studies show evidence of higher than expected grazing activity by protists down to mesopelagic depths. This study provides the first exploration of protist grazing in the bathypelagic North Atlantic Deep Water (NADW). Grazing was measured throughout the water column at three stations in the South Atlantic using fluorescently-labeled prey analogues. Grazing in the deep Antarctic Intermediate water (AAIW) and NADW at all three stations removed 3.79% ± 1.72% to 31.14% ± 8.24% of the standing prokaryote stock. These results imply that protist grazing may be a significant source of labile organic carbon at certain meso- and bathypelagic depths.
    Description: Funding for the cruise was provided by the National Science Foundation (OCE-1154320) to EBK. Funding for the laboratory work was provided by contributions from the Woods Hole Oceanographic Institution Director of Research, Ocean Life Institute, and Deep Ocean Exploration Institute to VE.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2015. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Extremophiles 19 (2015): 949-960, doi:10.1007/s00792-015-0770-1.
    Description: The sediment microbiota of the Mediterranean deep-sea anoxic hypersaline basins (DHABs) are understudied relative to communities in the brines and halocline waters. In this study, the active fraction of the prokaryotic community in the halocline sediments of L’ Atalante, Urania, and Discovery DHABs was investigated based on extracted total RNA and 454 pyrosequencing of the 16S rRNA gene. Bacterial and archaeal communities were different in the sediments underlying the halocline waters of the three habitats, reflecting the unique chemical settings of each basin. The relative abundance of unique operational taxonomic units (OTUs) was also different between deep-sea control sediments and sediments underlying DHAB haloclines, suggesting adaptation to the steep DHAB chemical gradients. Only a few OTUs were affiliated to known bacterial halophilic and/or anaerobic groups. Many OTUs, including some of the dominant ones, were related to aerobic taxa. Archaea were detected only in few halocline samples, with lower OTU richness relative to Bacteria, and were dominated by taxa associated with methane cycling. This study suggests that, while metabolically active prokaryotic communities appear to be present in sediments underlying the three DHABs investigated, their diversity and activity are likely to be more reduced in sediments underlying the brines.
    Description: This work was supported by NSF OCE- 0849578 to VE and JB and OCE-1061391 to JB and VE. MP was supported by the WHOI postdoctoral scholarship program. KAK was partially supported by the University of Thessaly through a sabbatical in 2013.
    Description: 2016-07-16
    Keywords: Bacteria ; Archaea ; cDNA ; Activity ; L’ Atalante ; Urania ; Discovery ; Anoxic
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in BMC Biology 13 (2015): 105, doi:10.1186/s12915-015-0213-6
    Description: The deep-sea hypersaline anoxic basins (DHABs) of the Mediterranean (water depth ~3500 m) are some of the most extreme oceanic habitats known. Brines of DHABs are nearly saturated with salt, leading many to suspect they are uninhabitable for eukaryotes. While diverse bacterial and protistan communities are reported from some DHAB haloclines and brines, loriciferans are the only metazoan reported to inhabit the anoxic DHAB brines. Our goal was to further investigate metazoan communities in DHAB haloclines and brines. We report observations from sediments of three DHAB (Urania, Discovery, L’Atalante) haloclines, comparing these to observations from sediments underlying normoxic waters of typical Mediterranean salinity. Due to technical difficulties, sampling of the brines was not possible. Morphotype analysis indicates nematodes are the most abundant taxon; crustaceans, loriciferans and bryozoans were also noted. Among nematodes, Daptonema was the most abundant genus; three morphotypes were noted with a degree of endemicity. The majority of rRNA sequences were from planktonic taxa, suggesting that at least some individual metazoans were preserved and inactive. Nematode abundance data, in some cases determined from direct counts of sediments incubated in situ with CellTrackerTM Green, was patchy but generally indicates the highest abundances in either normoxic control samples or in upper halocline samples; nematodes were absent or very rare in lower halocline samples. Ultrastructural analysis indicates the nematodes in L’Atalante normoxic control sediments were fit, while specimens from L’Atalante upper halocline were healthy or had only recently died and those from the lower halocline had no identifiable organelles. Loriciferans, which were only rarely encountered, were found in both normoxic control samples as well as in Discovery and L’Atalante haloclines. It is not clear how a metazoan taxon could remain viable under this wide range of conditions. We document a community of living nematodes in normoxic, normal saline deep-sea Mediterranean sediments and in the upper halocline portions of the DHABs. Occurrences of nematodes in mid-halocline and lower halocline samples did not provide compelling evidence of a living community in those zones. The possibility of a viable metazoan community in brines of DHABs is not supported by our data at this time.
    Description: Supported by NSF grants OCE-0849578 to VPE and JMB, OCE-1061391 to JMB and VPE, and The Investment in Science Fund at WHOI.
    Keywords: Athalassohaline ; Bryozoa ; CellTrackerTM Green ; Discovery ; L’Atalante ; Loricifera ; Meiofauna ; Nematoda ; Ultrastructure ; Urania
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: Link provides access to supplemental tables and figures to our manuscript regarding metazoans of redoxcline sediments in Mediterranean deep-sea hypersaline anoxic basins (DHABs). Specimens shown in supplemental figures are loriciferans collected from control and lower halocline sediments of L'Atalante Basin and Discovery Basin. Further details appear in Bernhard et al. (submitted).
    Repository Name: Woods Hole Open Access Server
    Type: Dataset , Still Image
    Format: application/vnd.ms-powerpoint
    Format: application/msword
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Microbiology 6 (2015): 1288, doi:10.3389/fmicb.2015.01288.
    Description: We used culture-based and culture-independent approaches to discover diversity and ecology of anaerobic jakobids (Excavata: Jakobida), an overlooked, deep-branching lineage of free-living nanoflagellates related to Euglenozoa. Jakobids are among a few lineages of nanoflagellates frequently detected in anoxic habitats by PCR-based studies, however only two strains of a single jakobid species have been isolated from those habitats. We recovered 712 environmental sequences and cultured 21 new isolates of anaerobic jakobids that collectively represent at least ten different species in total, from which four are uncultured. Two cultured species have never been detected by environmental, PCR-based methods. Surprisingly, culture-based and culture-independent approaches were able to reveal a relatively high proportion of overall species diversity of anaerobic jakobids—60 or 80%, respectively. Our phylogenetic analyses based on SSU rDNA and six protein-coding genes showed that anaerobic jakobids constitute a clade of morphologically similar, but genetically and ecologically diverse protists—Stygiellidae fam. nov. Our investigation combines culture-based and environmental molecular-based approaches to capture a wider extent of species diversity and shows Stygiellidae as a group that ordinarily inhabits anoxic, sulfide- and ammonium-rich marine habitats worldwide.
    Description: This work was supported by grants from the Czech Science Foundation (project GA14-14105S), the Grant Agency of Charles University (project 301711), Charles University Specific Research SVV 260208/2015. VE and MP acknowledge support from NSF OCE-0849578 and OCE-0326175 for DHAB and Cariaco data. Unpublished data from Saanich Inlet were generously provided by Steven Hallam whose long-term research at this site is made possible through funding from the Tula Foundation-funded Centre for Microbial Diversity and Evolution, the Natural Sciences and Engineering Research Council of Canada, the Canada Foundation for Innovation, and the Canadian Institute for Advanced Research for Saanich Inlet data.
    Keywords: Cryptic species ; Environmental clones ; Marine communities ; Species diversity ; Anaerobic protists
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/msword
    Format: application/fasta
    Format: application/pdf
    Format: application/vnd.ms-excel
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-25
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Torres-Beltran, M., Mueller, A., Scofield, M., Pachiadaki, M. G., Taylor, C., Tyshchenko, K., Michiels, C., Lam, P., Ulloa, O., Jurgens, K., Hyun, J., Edgcomb, V. P., Crowe, S. A., & Hallam, S. J. Sampling and processing methods impact microbial community structure and potential activity in a seasonally anoxic fjord: Saanich Inlet, British Columbia. Frontiers in Marine Science, 6,(2019):132, doi:10.3389/fmars.2019.00132.
    Description: The Scientific Committee on Oceanographic Research (SCOR) Working Group 144 Microbial Community Responses to Ocean Deoxygenation workshop held in Vancouver, B.C on July 2014 had the primary objective of initiating a process to standardize operating procedures for compatible process rate and multi-omic (DNA, RNA, protein, and metabolite) data collection in marine oxygen minimum zones and other oxygen depleted waters. Workshop attendees participated in practical sampling and experimental activities in Saanich Inlet, British Columbia, a seasonally anoxic fjord. Experiments were designed to compare and cross-calibrate in situ versus bottle sampling methods to determine effects on microbial community structure and potential activity when using different filter combinations, filtration methods, and sample volumes. Resulting biomass was preserved for small subunit ribosomal RNA (SSU or 16S rRNA) and SSU rRNA gene (rDNA) amplicon sequencing followed by downstream statistical and visual analyses. Results from these analyses showed that significant community shifts occurred between in situ versus on ship processed samples. For example, Bacteroidetes, Alphaproteobacteria, and Opisthokonta associated with on-ship filtration onto 0.4 μm filters increased fivefold compared to on-ship in-line 0.22 μm filters or 0.4 μm filters processed and preserved in situ. In contrast, Planctomycetes associated with 0.4 μm in situ filters increased fivefold compared to on-ship filtration onto 0.4 μm filters and on-ship in-line 0.22 μm filters. In addition, candidate divisions and Chloroflexi were primarily recovered when filtered onto 0.4 μm filters in situ. Results based on rRNA:rDNA ratios for microbial indicator groups revealed previously unrecognized roles of candidate divisions, Desulfarculales, and Desulfuromandales in sulfur cycling, carbon fixation and fermentation within anoxic basin waters. Taken together, filter size and in situ versus on-ship filtration had the largest impact on recovery of microbial groups with the potential to influence downstream metabolic reconstruction and process rate measurements. These observations highlight the need for establishing standardized and reproducible techniques that facilitate cross-scale comparisons and more accurately assess in situ activities of microbial communities.
    Description: This work was performed under the auspices of the Scientific Committee on Oceanographic Research (SCOR), the United States Department of Energy (DOE) Joint Genome Institute, an Office of Science User Facility, supported by the Office of Science of the United States Department of Energy under Contract DE-AC02- 05CH11231, the G. Unger Vetlesen and Ambrose Monell Foundations, the Tula Foundation-funded Centre for Microbial Diversity and Evolution, the Natural Sciences and Engineering Research Council of Canada, Genome British Columbia, the Canada Foundation for Innovation, and the Canadian Institute for Advanced Research through grants awarded to SH. McLane Research Laboratories and Connie Lovejoy contributed access to instrumentation for field work. Ship time support was provided by NSERC between 2007 and 2014 through grants awarded to SC, SH and Philippe Tortell MT-B was funded by Consejo Nacional de Ciencia y Tecnología (CONACyT) and the Tula Foundation.
    Keywords: microbial ecology ; oxygen minimum zone ; standards of practice ; filtration methods ; amplicon sequencing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...